Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "biomass"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
Saxibacter everestensis gen. nov., sp. nov., A Novel Member of the Family Brevibacteriaceae, Isolated from the North Slope of Mount Everest
Mao Tian, Shiyu Wu, Wei Zhang, Gaosen Zhang, Xue Yu, Yujie Wu, Puchao Jia, Binglin Zhang, Tuo Chen, Guangxiu Liu
J. Microbiol. 2024;62(4):277-284.   Published online March 6, 2024
DOI: https://doi.org/10.1007/s12275-024-00108-1
  • 75 View
  • 0 Download
AbstractAbstract
We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038(T), from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10-37 °C, pH 4-10, and 0-6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C(15:0) and iso-C(17:0). Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038(T) has the highest similarity with Spelaeicoccus albus DSM 26341( T) (96.02%). ZFBP1038(T) formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038(T) was 63.65 mol% and the genome size was 4.05 Mb. Digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038(T) and representative reference strains were 19.3-25.2, 68.0-71.0, and 52.8-60.1%, respectively. Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038(T) represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038(T) (= EE 014( T) = GDMCC 1.3024( T) = JCM 35335( T)).
Research Support, Non-U.S. Gov't
Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi
Jae-Won Lee , Ki-Seob Gwak , Jun-Yeong Park , Don-Ha Choi , Mi Kwon , In-Gyu Choi
J. Microbiol. 2007;45(6):485-491.
DOI: https://doi.org/2647 [pii]
  • 41 View
  • 0 Download
AbstractAbstract
The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81% compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01%) compared to non-pretreated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass.
Effects of Selected Environmental Conditions on Biomass and Geosmin Production by Streptomyces halstedii
Kevin K. Schrader , Willard T. Blevins
J. Microbiol. 1999;37(3):159-167.
  • 38 View
  • 0 Download
AbstractAbstract
The effects of bicarbonate concentration, atmospheric carbon dioxide level, and reduced atmospheric oxygen on biomass and geosmin production and geosmin/biomass (G/B) values for Streptomyces halstedii, a producer of the off-flavor compound geosmin, were determined. In addition, a study was performed to determined possible synergistic relationships between a cyanobacterium, Oscillatoria tenuis UTEX #1566, and S. halstedii in the enhancement of actinomycete growth and/or geosmin production. These studies took into consideration those conditions that can occur during cyanobacterial bloom die-offs. Increasing bicarbonate concentration caused slight decreases in geosmin production and G/B for S. halstedii. Increasing atmospheric oxygen promoted geosmin production and G/B while lower oxygen levels resulted in a decrease in geosmin production and G/B by S. halstedii. Biomass production by S. halstedii was adversely affected by reduced oxygen levels while changes in bicarbonate concentration and atmospheric carbon dioxdie levels had little effect on biomass production. Sonicated cells of O. tenuis UTEX #1566 promoted biomass production by S. halstedii, and O. tenuis culture (cells and extracellular metabolites) and culture supernatnat (extracellular metabolites) each promoted geosmin and G/B yields for S. halstedii. In certain aquatic systems, environmental conditions resulting from cyanobacterial blooms and subsequent bloom die-offs could favor actinomycete growth and off-flavor compound production by certain actinomycetes.

Journal of Microbiology : Journal of Microbiology
TOP