Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "antiserum"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov't
Characterization of Streptococcus pneumoniae N-Acetylglucosamine-6-Phosphate Deacetylase as a Novel Diagnostic Marker
Chi-Won Choi , Hee-Young An , Yong Ju Lee , Yeol Gyun Lee , Sung Ho Yun , Edmond Changkyun Park , Yeonhee Hong , Gun-Hwa Kim , Jae-Eun Park , Sun Jong Baek , Hyun Sik Kim , Seung Il Kim
J. Microbiol. 2013;51(5):659-664.   Published online October 31, 2013
DOI: https://doi.org/10.1007/s12275-013-3451-8
  • 44 View
  • 0 Download
  • 4 Crossref
AbstractAbstract
The identification of novel diagnostic markers of pathogenic bacteria is essential for improving the accuracy of diagnoses and for developing targeted vaccines. Streptococcus pneumoniae is a significant human pathogenic bacterium that causes pneumonia. N-acetylglucosamine-6-phosphate deacetylase (NagA) was identified in a protein mixture secreted by S. pneumoniae and its strong immunogenicity was confirmed in an immuno-proteomic assay against the anti-serum of the secreted protein mixture. In this study, recombinant S. pneumoniae NagA protein was expressed and purified to analyze its protein characteristics, immunospecificity, and immunogenicity, thereby facilitating its evaluation as a novel diagnostic marker for S. pneumoniae. Mass spectrometry analysis showed that S. pneumoniae NagA contains four internal disulfide bonds and that it does not undergo posttranslational modification. S. pneumoniae NagA antibodies successfully detected NagA from different S. pneumoniae strains, whereas NagA from other pathogenic bacteria species was not detected. In addition, mice infected with S. pneumoniae generated NagA antibodies in an effective manner. These results suggest that NagA has potential as a novel diagnostic marker for S. pneumoniae because of its high immunogenicity and immunospecificity.

Citations

Citations to this article as recorded by  
  • Multi-omic profiling to assess the effect of iron starvation inStreptococcus pneumoniaeTIGR4
    Irene Jiménez-Munguía, Mónica Calderón-Santiago, Antonio Rodríguez-Franco, Feliciano Priego-Capote, Manuel J. Rodríguez-Ortega
    PeerJ.2018; 6: e4966.     CrossRef
  • Mycoplasma fermentans deacetylase promotes mammalian cell stress tolerance
    Qingzhou Cheng, Lijuan Wu, Rongfu Tu, Jun Wu, Wenqian Kang, Tong Su, Runlei Du, Wenbin Liu
    Microbiological Research.2017; 201: 1.     CrossRef
  • Serotype IV Sequence Type 468 Group BStreptococcusNeonatal Invasive Disease, Minnesota, USA
    Sarah Teatero, Patricia Ferrieri, Nahuel Fittipaldi
    Emerging Infectious Diseases.2016; 22(11): 1937.     CrossRef
  • Mass Spectrometry in Clinical Microbiology and Infectious Diseases
    Frank Fleurbaaij, Hans C. van Leeuwen, Oleg I. Klychnikov, Ed J. Kuijper, Paul J. Hensbergen
    Chromatographia.2015; 78(5-6): 379.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP