Streptomyces are a crucial source of bioactive secondary metabolites with significant clinical applications. Recent studies of bacterial and metagenome-assembled genomes have revealed that Streptomyces harbors a substantial number of uncharacterized silent secondary metabolite biosynthetic gene clusters (BGCs). These BGCs represent a vast diversity of biosynthetic pathways for natural product synthesis, indicating significant untapped potential for discovering new metabolites. To exploit this potential, genome mining using comprehensive strategies that leverage extensive genomic databases can be conducted. By linking BGCs to their encoded products and integrating genetic manipulation techniques, researchers can greatly enhance the identification of new secondary metabolites with therapeutic relevance. In this context, we present a step-by-step guide for using the antiSMASH pipeline to identify secondary metabolite-coding BGCs within the complete genome of a novel Streptomyces strain. This protocol also outlines gene manipulation methods that can be applied to Streptomyces to activate cryptic clusters of interest and validate the functions of biosynthetic genes. By following these guidelines, researchers can pave the way for discovering and characterizing valuable natural products.
Salmonella enterica is a clinically significant oro-fecal pathogen that causes a wide variety of illnesses and can lead to epidemics. S. enterica expresses a lot of virulence factors that enhance its pathogenesis in host. For instance, S. enterica employs a type three secretion system (T3SS) to translocate a wide array of effector proteins that could change the surrounding niche ensuring suitable conditions for the thrive of Salmonella infection. Many antimicrobials have been recently introduced to overcome the annoying bacterial resistance to antibiotics. Enoxacin is member of the second-generation quinolones that possesses a considerable activity against S. enterica. The present study aimed to evaluate the effect of enoxacin at sub-minimum inhibitory concentration (sub-MIC) on S. enterica virulence capability and pathogenesis in host. Enoxacin at sub-MIC significantly diminished both Salmonella invasion and intracellular replication within the host cells. The observed inhibitory effect of enoxacin on S. enterica internalization could be attributed to its ability to interfere with translocation of the T3SS effector proteins. These results were further confirmed by the finding that enoxacin at sub-MIC down-regulated the expression of the genes encoding for T3SS-type II (T3SS-II). Moreover, enoxacin at sub-MIC lessened bacterial adhesion to abiotic surface and biofilm formation which indicates a potential anti-virulence activity. Importantly, in vivo results showed a significant ability of enoxacin to protect mice against S. enterica infection and decreased bacterial colonization within animal tissues. In nutshell, current findings shed light on an additional mechanism of enoxacin at sub-MIC by interfering with Salmonella intracellular replication. The outcomes presented herein could be further invested in conquering bacterial resistance and open the door for additional effective clinical applications.
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations