Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
16 "Pb"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Synthetic biology strategies for sustainable bioplastic production by yeasts
Huong-Giang Le, Yongjae Lee, Sun-Mi Lee
J. Microbiol. 2025;63(3):e2501022.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501022
  • 540 View
  • 35 Download
  • 1 Crossref
AbstractAbstract PDF

The increasing environmental concerns regarding conventional plastics have led to a growing demand for sustainable alternatives, such as biodegradable plastics. Yeast cell factories, specifically Saccharomyces cerevisiae and Yarrowia lipolytica, have emerged as promising platforms for bioplastic production due to their scalability, robustness, and ease of manipulation. This review highlights synthetic biology approaches aimed at developing yeast cell factories to produce key biodegradable plastics, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and poly (butylene adipate-co-terephthalate) (PBAT). We explore recent advancements in engineered yeast strains that utilize various synthetic biology strategies, such as the incorporation of new genetic elements at the gene, pathway, and cellular system levels. The combined efforts of metabolic engineering, protein engineering, and adaptive evolution have enhanced strain efficiency and maximized product yields. Additionally, this review addresses the importance of integrating computational tools and machine learning into the Design-Build-Test-Learn cycle for strain development. This integration aims to facilitate strain development while minimizing effort and maximizing performance. However, challenges remain in improving strain robustness and scaling up industrial production processes. By combining advanced synthetic biology techniques with computational approaches, yeast cell factories hold significant potential for the sustainable and scalable production of bioplastics, thus contributing to a greener bioeconomy.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
Research Article
Comprehensive genomic and functional analysis of Leuconostoc lactic acid bacteria in alcohol and acetaldehyde metabolism
Joo-Han Gwak, Yun Ji Choi, Hina Ayub, Min Kyeong Seol, Hongik Kim, Man-Young Jung
J. Microbiol. 2025;63(2):e2410026.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2410026
  • 449 View
  • 25 Download
AbstractAbstract PDFSupplementary Material

Alcohol consumption can lead to the accumulation of harmful metabolites, such as acetaldehyde, contributing to various adverse health effects, including hangovers and liver damage. This study presents a comprehensive genomic and functional analysis of Leuconostoc suionicum VITA-PB2, a lactic acid bacterial strain isolated from kimchi, to elucidate its role in enhancing alcohol and acetaldehyde metabolism. Genomic characterization revealed key genes encoding alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), providing insights into the metabolic capabilities of strain VITA-PB2. Phylogenomic analyses confirmed its taxonomic classification and genetic similarity to other Leuconostoc species. Functional validation through in vitro and in vivo experiments demonstrated superior ethanol and acetaldehyde decomposition abilities of strain VITA-PB2, with significant reductions in blood ethanol and acetaldehyde levels observed in rats administered with the strain. Further analysis indicated that while hepatic ADH activity did not significantly increase; however, ALDH expression was elevated. This suggests that the microbial ADH of strain VITA-PB2 contributed to ethanol breakdown, while both microbial and host ALDH facilitated acetaldehyde detoxification. These findings highlight the potential of strain VITA-PB2 as a functional probiotic for mitigating the toxic effects of alcohol consumption.

Journal Articles
RapB Regulates Cell Adhesion and Migration in Dictyostelium, Similar to RapA
Uri Han, Nara Han, Byeonggyu Park, Taeck Joong Jeon
J. Microbiol. 2024;62(8):627-637.   Published online June 17, 2024
DOI: https://doi.org/10.1007/s12275-024-00143-y
  • 64 View
  • 0 Download
AbstractAbstract
Ras small GTPases act as molecular switches in various cellular signaling pathways, including cell migration, proliferation, and differentiation. Three Rap proteins are present in Dictyostelium; RapA, RapB, and RapC. RapA and RapC have been reported to have opposing functions in the control of cell adhesion and migration. Here, we investigated the role of RapB, a member of the Ras GTPase subfamily in Dictyostelium, focusing on its involvement in cell adhesion, migration, and developmental processes. This study revealed that RapB, similar to RapA, played a crucial role in regulating cell morphology, adhesion, and migration. rapB null cells, which were generated by CRISPR/Cas9 gene editing, displayed altered cell size, reduced cell-substrate adhesion, and increased migration speed during chemotaxis. These phenotypes of rapB null cells were restored by the expression of RapB and RapA, but not RapC. Consistent with these results, RapB, similar to RapA, failed to rescue the phenotypes of rapC null cells, spread morphology, increased cell adhesion, and decreased migration speed during chemotaxis. Multicellular development of rapB null cells remained unaffected. These results suggest that RapB is involved in controlling cell morphology and cell adhesion. Importantly, RapB appears to play an inhibitory role in regulating the migration speed during chemotaxis, possibly by controlling cell-substrate adhesion, resembling the functions of RapA. These findings contribute to the understanding of the functional relationships among Ras subfamily proteins.
Alpha‑Hemolysin from Staphylococcus aureus Obstructs Yeast‑Hyphae Switching and Diminishes Pathogenicity in Candida albicans
Xiaoyu Yu , Yinhe Mao , Guangbo Li , Xianwei Wu , Qiankun Xuan , Simin Yang , Xiaoqing Chen , Qi Cao , Jian Guo , Jinhu Guo , Wenjuan Wu
J. Microbiol. 2023;61(2):233-243.   Published online February 9, 2023
DOI: https://doi.org/10.1007/s12275-022-00006-4
  • 66 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract
The use of antibiotics can disrupt the body’s natural balance and increase the susteptibility of patients towards fungal infections. Candida albicans is a dimorphic opportunistic fungal pathogen with niches similar to those of bacteria. Our aim was to study the interaction between this pathogen and bacteria to facilitate the control of C. albicans infection. Alpha-hemolysin (Hla), a protein secreted from Staphylococcus aureus, causes cell wall damage and impedes the yeast–hyphae transition in C. albicans. Mechanistically, Hla stimulation triggered the formation of reactive oxygen species that damaged the cell wall and mitochondria of C. albicans. The cell cycle was arrested in the G0/G1 phase, CDC42 was downregulated, and Ywp1 was upregulated, disrupting yeast hyphae switching. Subsequently, hyphae development was inhibited. In mouse models, C. albicans pretreated with Hla reduced the C. albicans burden in skin and vaginal mucosal infections, suggesting that S. aureus Hla can inhibit hyphal development and reduce the pathogenicity of candidiasis in vivo.

Citations

Citations to this article as recorded by  
  • Candida albicans and Candida glabrata : global priority pathogens
    Myrto Katsipoulaki, Mark H. T. Stappers, Dhara Malavia-Jones, Sascha Brunke, Bernhard Hube, Neil A. R. Gow, Joseph Heitman
    Microbiology and Molecular Biology Reviews.2024;[Epub]     CrossRef
The periplasmic chaperone protein Psg_2795 contributes to the virulence of Pseudomonas savastanoi pv. glycinea: the causal agent of bacterial blight of soybean
Xiuhua Wang , Xiaoyan Zhang , Bao-Hui Lu , Jie Gao
J. Microbiol. 2022;60(5):478-487.   Published online March 4, 2022
DOI: https://doi.org/10.1007/s12275-022-1469-5
  • 65 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract
Pseudomonas savastanoi pv. glycinea (Psg, also named P. syringae pv. glycinea and P. amygdali pv. glycinea) is the causative agent of bacterial blight in soybean. The identification of virulence factors is essential for understanding the pathogenesis of Psg. In this study, a mini-Tn5 transposon mutant library of Psg strain PsgNC12 was screened on soybean, and one low-virulent mini-Tn5 mutant, designated as 4573, was identified. Sequence analysis of the 4573-mutant revealed that the mini-Tn5 transposon was inserted in the Psg_2795 gene. Psg_2795 encodes a FimC-domain protein that is highly conserved in Pseudomonas. Further analysis revealed that the mutation and knockout of Psg_2795 results in a reduced virulence phenotype on soybean, decreased motility, weakened bacterial attachment to a glass surface and delayed the population growth within soybean leaves. The phenotype of the 4573-mutant could be complemented nearly to wild-type levels using an intact Psg_2795 gene. Collectively, our results demonstrate that Psg_2795 plays an important role in the virulence, motility, attachment and the population growth of PsgNC12 in soybean. This finding provides a new insight into the function of periplasmic chaperone proteins in a type I pilus and provides reference information for identifying Psg_2795 homologues in P. savastanoi and other bacteria.

Citations

Citations to this article as recorded by  
  • Vt35 antitoxin plays a central regulatory role in virulence of Pseudomonas savastanoi pv. glycinea on soybean
    Viet Tru Nguyen, Nanami Sakata, Takako Ishiga, Giyu Usuki, Yoshiteru Hashimoto, Yasuhiro Ishiga
    Journal of General Plant Pathology.2023; 89(4): 211.     CrossRef
Inferences in microbial structural signatures of acne microbiome and mycobiome
Jubin Kim , Taehun Park , Hye-Jin Kim , Susun An , Woo Jun Sul
J. Microbiol. 2021;59(4):369-375.   Published online February 10, 2021
DOI: https://doi.org/10.1007/s12275-021-0647-1
  • 57 View
  • 0 Download
  • 17 Web of Science
  • 18 Crossref
AbstractAbstract
Acne vulgaris, commonly known as acne, is the most common skin disorder and a multifactorial disease of the sebaceous gland. Although the pathophysiology of acne is still unclear, bacterial and fungal factors are known to be involved in. This study aimed to investigate whether the microbiomes and mycobiomes of acne patients are distinct from those of healthy subjects and to identify the structural signatures of microbiomes related to acne vulgaris. A total of 33 Korean female subjects were recruited (Acne group, n = 17; Healthy group, n = 16), and microbiome samples were collected swabbing the forehead and right cheek. To characterize the fungal and bacterial communities, 16S rRNA V4–V5 and ITS1 region, respectively, were sequenced and analysed using Qiime2. There were no significant differences in alpha and beta diversities of microbiomes between the Acne and Healthy groups. In comparison with the ratio of Cutibacterium to Staphylococcus, the acne patients had higher abundance of Staphylococcus compared to Cutibacterium than the healthy individuals. In network analysis with the dominant microorganism amplicon sequence variants (ASV) (Cutibacterium, Staphylococcus, Malassezia globosa, and Malassezia restricta) Cutibacterium acnes was identified to have hostile interactions with Staphylococcus and Malassezia globosa. Accordingly, this
results
suggest an insight into the differences in the skin microbiome and mycobiome between acne patients and healthy controls and provide possible microorganism candidates that modulate the microbiomes associated to acne vulgaris.

Citations

Citations to this article as recorded by  
  • Acne due to JAK inhibitors in inflammatory bowel disease
    Andrew Awad, Britt Christensen, Jonathan P Segal, Gayle Ross
    Frontline Gastroenterology.2025; 16(2): 166.     CrossRef
  • Amplicon-based analysis reveals link between adolescent acne and altered facial skin microbiome induced by negative emotional states
    Yu Chen, Lixia Peng, Yueying Li, Yusheng Peng, Siqi Dai, Kai Han, Jinge Xin
    Frontiers in Cellular and Infection Microbiology.2025;[Epub]     CrossRef
  • Interações entre malassezia restricta e o micobioma humano: uma perspectiva abrangente
    Maria Vitória Cavalheiro Berlofa, Ana Carolina de Oliveira Ramos Siqueira, Yara Natércia Lima Faustino de Maria, Rafaela de Campos Oliveira, Paulo Salarrola Takao, Ana Clara da Silva, Milena Coutinho Natucci, Fabiano Bezerra Menegidio, Daniela Leite Jabes
    Revista Científica Multidisciplinar Núcleo do Conhecimento.2024; : 21.     CrossRef
  • Guidelines of care for the management of acne vulgaris
    Rachel V. Reynolds, Howa Yeung, Carol E. Cheng, Fran Cook-Bolden, Seemal R. Desai, Kelly M. Druby, Esther E. Freeman, Jonette E. Keri, Linda F. Stein Gold, Jerry K.L. Tan, Megha M. Tollefson, Jonathan S. Weiss, Peggy A. Wu, Andrea L. Zaenglein, Jung Min H
    Journal of the American Academy of Dermatology.2024; 90(5): 1006.e1.     CrossRef
  • Microenvironmental host–microbe interactions in chronic inflammatory skin diseases
    Lene Bay, Gregor Borut Jemec, Hans Christian Ring
    APMIS.2024; 132(12): 974.     CrossRef
  • Microbiome: Role in Inflammatory Skin Diseases
    Xue-Er Zhang, Pai Zheng, Sheng-Zhen Ye, Xiao Ma, E Liu, Yao-Bin Pang, Qing-Ying He, Yu-Xiao Zhang, Wen-Quan Li, Jin-Hao Zeng, Jing Guo
    Journal of Inflammation Research.2024; Volume 17: 1057.     CrossRef
  • Evaluation of the Effects of Age, Sex, and Dexpanthenol-Containing Skin Care on the Facial and Body Skin Microbiome
    Zainab Qaizar, Raffaella de Salvo, Gregor Bieri, Katrin Unbereit, Shannon Montgomery, Erwan Peltier
    Cosmetics.2024; 11(6): 213.     CrossRef
  • New insights into the characteristic skin microorganisms in different grades of acne and different acne sites
    Zitao Guo, Yuliang Yang, Qianjie Wu, Meng Liu, Leyuan Zhou, Liang Zhang, Dake Dong
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Distinct skin microbiome modulation following different topical acne treatments in mild acne vulgaris patients: A randomized, investigator‐blinded exploratory study
    Chanidapa Wongtada, Pinidphon Prombutara, Pravit Asawanonda, Nopadon Noppakun, Chanat Kumtornrut, Tanittha Chatsuwan
    Experimental Dermatology.2023; 32(6): 906.     CrossRef
  • A cross‐sectional cohort study on the skin microbiota in patients with different acne durations
    Lang Sun, Qingqun Wang, Huan Wang, Jing Huang, Zheng Yu
    Experimental Dermatology.2023; 32(12): 2102.     CrossRef
  • Truncal acne following JAK inhibitor use in vitiligo with rare opportunistic fungal infections: Two case reports
    Jee Yun Doh, Piyapat Rintarhat, Won Hee Jung, Hei Sung Kim
    JAAD Case Reports.2023; 37: 123.     CrossRef
  • New Normal Mask-Wearing and Its Impact on Underneath Skin Microbiome: A Cross-Sectional Study in Mild Acne Vulgaris Patients
    Chanidapa Wongtada, Thanaporn Puaratana-arunkon, Pinidphon Prombutara, Pravit Asawanonda, Nopadon Noppakun, Chanat Kumtornrut, Tanittha Chatsuwan
    Skin Appendage Disorders.2022; 8(5): 376.     CrossRef
  • Truncal Acne: An Overview
    Yu Ri Woo, Hei Sung Kim
    Journal of Clinical Medicine.2022; 11(13): 3660.     CrossRef
  • Skin microbiome in acne vulgaris, skin aging, and rosacea
    Yu-Ching Weng, Yi-Ju Chen
    Dermatologica Sinica.2022; 40(3): 129.     CrossRef
  • Infant Mode of Delivery Shapes the Skin Mycobiome of Prepubescent Children
    Yan-Ren Wang, Ting Zhu, Fan-Qi Kong, Yuan-Yuan Duan, Carlos Galzote, Zhe-Xue Quan, Jan Claesen, Laura Tipton
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • A split face study on the effect of an anti-acne product containing fermentation products of Enterococcus faecalis CBT SL-5 on skin microbiome modification and acne improvement
    Hye Sung Han, Sun Hye Shin, Bo-Yun Choi, Nayeon Koo, Sanghyun Lim, Dooheon Son, Myung Jun Chung, Kui Young Park, Woo Jun Sul
    Journal of Microbiology.2022; 60(5): 488.     CrossRef
  • Genome of Malassezia arunalokei and Its Distribution on Facial Skin
    Yong-Joon Cho, Taeyune Kim, Daniel Croll, Minji Park, Donghyeun Kim, Hye Lim Keum, Woo Jun Sul, Won Hee Jung, Teresa R. O'Meara
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Features of the Skin Microbiota in Common Inflammatory Skin Diseases
    Iva Ferček, Liborija Lugović-Mihić, Arjana Tambić-Andrašević, Diana Ćesić, Ana Gverić Grginić, Iva Bešlić, Marinka Mravak-Stipetić, Iva Mihatov-Štefanović, Ana-Marija Buntić, Rok Čivljak
    Life.2021; 11(9): 962.     CrossRef
Research Support, Non-U.S. Gov'ts
An Easy Way for the Rapid Purification of Recombinant Proteins from Helicobacter pylori Using a Newly Designed Expression Vector
Hyung-Lyun Kang , Jin-Sung Jo , Soon-Uck Kwon , Jae-Young Song , Ji-Hyun Seo , Myung-Je Cho , Seung-Chul Baik , Hee-Shang Youn , Kwang-Ho Rhee , Woo-Kon Lee
J. Microbiol. 2014;52(7):604-608.   Published online June 28, 2014
DOI: https://doi.org/10.1007/s12275-014-3679-y
  • 49 View
  • 0 Download
  • 1 Crossref
AbstractAbstract
We constructed a H. pylori expression vector which consisted of both a His-tag and a GST tag as purification tools for recombinant protein and a chloramphenicol resistant cat gene as a reporter. The backbone of the vector pBK contained an ColEI origin of replication and a kanamycin resistant gene. A set of oligos for the His-tag and the PCR product of gst (glutathione S-transferase) gene were inserted sequentially in frame in the multi-cloning site of pBK. The orf of cat was inserted downstream of the gst to generate pBKHGC. The 3' part of H. pylori clpB and flaA were cloned into the vector which was introduced into H. pylori. Recombinant proteins were purified by GSH affinity column, digested with thrombin and were analyzed by western blotting. The final recombinant proteins were successfully purified.

Citations

Citations to this article as recorded by  
  • Gene polymorphisms of pathogenic Helicobacter pylori in patients with different types of gastrointestinal diseases
    Yu-Li Chen, Xiao-Qiang Mo, Gan-Rong Huang, Yan-Qiang Huang, Juan Xiao, Li-Juan Zhao, Hong-Yu Wei, Qian Liang
    World Journal of Gastroenterology.2016; 22(44): 9718.     CrossRef
Pb Tolerance and Bioaccumulation by the Mycelia of Flammulina velutipes in Artificial Enrichment Medium
Changwei Zhu , Zhengpeng Li , Decai Li , Yan Xin
J. Microbiol. 2014;52(1):8-12.   Published online January 4, 2014
DOI: https://doi.org/10.1007/s12275-014-2560-3
  • 56 View
  • 0 Download
  • 5 Crossref
AbstractAbstract
Mushrooms have the ability to accumulate high concentrations of heavy metals, which gives them potential for use as bioremediators of environmental contamination. The Pb2+ tolerance and accumulation ability of living mycelia of Flammulina velutipes were studied in this work. Mycelial growth was inhibited when exposed to 1 mM Pb2+. The colony diameter on solid medium decreased almost 10% compared with the control. Growth decreased almost 50% when the Pb2+ concentration increased to 4 mM in the medium, with the colony diameter decreasing from 80 mm to 43.4 mm, and dry biomass production in liquid cultures decreasing from 9.23±0.55 to 4.27±0.28 g/L. Lead ions were efficiently accumulated in the mycelia. The amount of Pb2+ in the mycelia increased with increasing Pb2+ concentration in the medium, with the maximum concentration up to 707±91.4 mg/kg dry weight. We also show evidence that a large amount of the Pb2+ was adsorbed to the mycelial surface, which may indicate that an exclusion mechanism is involved in Pb tolerance. These results demonstrate that F. velutipes could be useful as a remediator of heavy metal contamination because of the characteristics of high tolerance to Pb2+ and efficient accumulation of Pb2+ ions by the mycelia.

Citations

Citations to this article as recorded by  
  • An Approach to Evaluate Pb Tolerance and Its Removal Mechanisms by Pleurotus opuntiae
    Priyanka Yadav, Vartika Mishra, Tejmani Kumar, Awadhesh Kumar Rai, Ayush Gaur, Mohan Prasad Singh
    Journal of Fungi.2023; 9(4): 405.     CrossRef
  • Detrimental and essential elements in fruiting bodies of wild-growing fungi Coprinus comatus, Flammulina velutipes, and Armillaria ostoyae
    Jan Vondruška, Jan Šíma, Marek Kobera, Lukáš Rokos, Martin Šeda, Lubomír Svoboda
    Journal of Environmental Science and Health, Part B.2022; 57(4): 243.     CrossRef
  • Waste apple wood: A safe and economical alternative substrate for the cultivation of Pleurotus ostreatus and Lentinula edodes
    Guorong Yu, Xinxin Li, Shengting Zhao, Shuguang Sun, Yanru Yu, Jinzhi Chen, Xianhao Cheng, Weihuan Li
    Folia Horticulturae.2022; 34(2): 173.     CrossRef
  • The effect of different substrates on the growth of six cultivated mushroom species and composition of macro and trace elements in their fruiting bodies
    Marek Siwulski, Piotr Rzymski, Anna Budka, Pavel Kalač, Sylwia Budzyńska, Luiza Dawidowicz, Edmund Hajduk, Lidia Kozak, Joanna Budzulak, Krzysztof Sobieralski, Przemysław Niedzielski
    European Food Research and Technology.2019; 245(2): 419.     CrossRef
  • Biosorption characteristic of Alcaligenes sp. BAPb.1 for removal of lead(II) from aqueous solution
    Yu Jin, Sumei Yu, Chunying Teng, Tao Song, Liying Dong, Jinsong Liang, Xin Bai, Xiuhong Xu, Juanjuan Qu
    3 Biotech.2017;[Epub]     CrossRef
The N3 Subdomain in A Domain of Fibronectin-Binding Protein B Isotype I Is an Independent Risk Determinant Predictive for Biofilm Formation of Staphylococcus aureus Clinical Isolates
An Sung Kwon , Dong Hoon Lim , Hyo Jung Shin , Geon Park , Jong H. Reu , Hyo Jin Park , Jungmin Kim , Yong Lim
J. Microbiol. 2013;51(4):499-505.   Published online August 30, 2013
DOI: https://doi.org/10.1007/s12275-013-3319-y
  • 44 View
  • 0 Download
  • 8 Scopus
AbstractAbstract
Fibronectin-binding proteins (FnBP), FnBPA and FnBPB, are purported to be involved in biofilm formation of Staphylococcus aureus. This study was performed to find which of three consecutive N subdomains of the A domain in the FnBP is the key domain in FnBP. A total of 465 clinical isolates of S. aureus were examined for the biofilm forming capacity and the presence of N subdomains of FnBP. In the biofilm-positive strains, N2 and N3 subdomains of FnBPA, and N1 and N3 subdomains of FnBPB were significantly more prevalent. Multivariate logistic regression analysis of 246 biofilm-positive and 123 biofilm-negative strains identified only the FnBPB-N3 subdomain as an independent risk determinant predictive for biofilm-positive strains of S. aureus (Odds ratio [OR], 13.174; P<0.001). We also attempted to delete each of the fnbA-N2 and -N3 and fnbB-N1 and -N3 from S. aureus strain 8325-4 and examined the biofilm forming capacity in the derivative mutants. In agreement with the results of the multivariate regression analysis, deletion of either the fnbA-N2 or -N3, or fnbB-N1 did not significantly diminish the capacity of strain 8325-4 to develop a biofilm, while deletion of the fnbB-N3 did. Therefore, it is suggested that the FnBPB-N3 subdomain of isotype I may be a key domain in FnBP which is responsible for the causing biofilm formation in S. aureus clinical isolates.
Journal Article
Interrelationship of Bradyrhizobium sp. and Plant Growth-Promoting Bacteria in Cowpea: Survival and Symbiotic Performance
Artenisa Cerqueira Rodrigues , Jadson Emanuel Lopes Antunes , Antônio Félix da Costa , José de Paula Oliveira , Marcia do Vale Barreto Figueiredo
J. Microbiol. 2013;51(1):49-55.   Published online March 2, 2013
DOI: https://doi.org/10.1007/s12275-013-2335-2
  • 45 View
  • 0 Download
  • 11 Scopus
AbstractAbstract
The objective of this study was to evaluate the survival of cowpea during bacterial colonization and evaluate the interrelationship of the Bradyrhizobium sp. and plant growthpromoting bacteria (PGPB) as a potential method for optimizing symbiotic performance and cowpea development. Two experiments using the model legume cowpea cv. “IPA 206” were conducted. In the first experiment, cowpea seeds were disinfected, germinated and transferred to sterilized Gibson tubes containing a nitrogen-free nutritive solution. The experimental design was randomized blocks with 24 treatments [Bradyrhizobium sp. (BR 3267); 22 PGPB; absolute control (AC)] with three replicates. In the second experiment, seeds were disinfected, inoculated according to their specific treatment and grown in Leonard jars containing washed and autoclaved sand. The experimental design was randomized blocks with 24 treatments [BR 3267; 22 BR 3267 + PGPB; AC] with three replicates. Scanning electron microscopy demonstrated satisfactory colonization of the roots of inoculated plants. Additionally, synergism between BR 3267 and PGPB in cowpeas was observed, particularly in the BR 3267 + Paenibacillus graminis (MC 04.21) and BR 3267 + P. durus (C 04.50), which showed greater symbiotic performance and promotion of cowpea development.
Research Support, Non-U.S. Gov'ts
Rapid Discrimination of Potato Scab-Causing Streptomyces Species Based on the RNase P RNA Gene Sequences
Hang-Yeon Weon , Jaekyeong Song , Byung-Yong Kim , On-Suk Hur , In-Cheol Park , Joo-Won Suh
J. Microbiol. 2011;49(5):791-796.   Published online November 9, 2011
DOI: https://doi.org/10.1007/s12275-011-1279-7
  • 40 View
  • 0 Download
AbstractAbstract
Scab disease significantly damages potatoes and other root crops. Some Streptomyces species have been reported as potato-scab pathogens. Identification of the phytopathogenic Streptomyces is mainly done on the basis of the 16S rRNA gene, but use of this gene has some limitations for discriminating these strains because they share high similarities of 16S rRNA gene sequences. We tested the RNase P RNA (rnpB) gene as a taxonomic marker to clarify the relationship among closely related scab-causing Streptomyces strains. The rnpB genes were analyzed for 41 strains including 9 isolates from Jeju, Korea. There were 4 highly variable regions including nucleotide gaps in the rnpB genes. Interspecies similarity of the rnpB gene in tested Streptomyces strains was lower than about 97%, while the intraspecies similarity was higher than about 98%. Phylogenetic analysis demonstrated that the rnpB tree has similar topology to the 16S rRNA gene tree, but produces a more divergent phyletic lineage. These results revealed that the rnpB gene could be used as a powerful taxonomic tool for rapid differentiation of closely related Streptomyces species. In addition, it was also suggested that the variable regions marked as α, β, γ, and δ in the rnpB gene could be useful markers for the detection of specific Streptomyces species.
Source Environment Feature Related Phylogenetic Distribution Pattern of Anoxygenic Photosynthetic Bacteria as Revealed by pufM Analysis
Yonghui Zeng , Nianzhi Jiao
J. Microbiol. 2007;45(3):205-212.
DOI: https://doi.org/2541 [pii]
  • 45 View
  • 0 Download
AbstractAbstract
Anoxygenic photosynthesis, performed primarily by anoxygenic photosynthetic bacteria (APB), has been supposed to arise on Earth more than 3 billion years ago. The long established APB are distributed in almost every corner where light can reach. However, the relationship between APB phylogeny and source environments has been largely unexplored. Here we retrieved the pufM sequences and related source information of 89 pufM containing species from the public database. Phylogenetic analysis revealed that horizontal gene transfer (HGT) most likely occurred within 11 out of a total 21 pufM subgroups, not only among species within the same class but also among species of different phyla or subphyla. A clear source environment feature related phylogenetic distribution pattern was observed, with all species from oxic habitats and those from anoxic habitats clustering into independent subgroups, respectively. HGT among ancient APB and subsequent long term evolution and adaptation to separated niches may have contributed to the coupling of environment and pufM phylogeny.
Journal Article
Carbon Source-Dependent Regulation of the Schizosaccharomyces pombe pbh1 Gene
Su-Jung Kim , Nam-Chul Cho , In Wang Ryu , Kyunghoon Kim , Eun-Hee Park , Chang-Jin Lim
J. Microbiol. 2006;44(6):689-693.
DOI: https://doi.org/2454 [pii]
  • 32 View
  • 0 Download
AbstractAbstract
Pbh1, from the fission yeast Schizosaccharomyces pombe, is a baculoviral inhibitor of apoptosis (IAP) repeat (BIR) domain-containing protein. Its unique encoding gene was previously found to be regulated by nitric oxide and nitrogen starvation. In the current work, the Pbh1-lacZ fusion gene was used to elucidate the transcriptional regulation of the pbh1 gene under various carbon sources. When fermentable carbon sources, such as glucose (at a low concentration of 0.2%), sucrose (2.0%) and lactose (2.0%), were the sole carbon source, the synthesis of β-galactosidase from the Pbh1-lacZ fusion gene was reasonably enhanced. However, the induction by these fermentable carbon sources was abolished in the Pap1-negative S. pombe cells, implying that this type of induction of the pbh1 gene is mediated by Pap1. Ethanol (2.0%), a nonfermentable carbon source, was also able to enhance the synthesis of β-galactosidase from the fusion gene in wild-type cells but not in Pap1-negative cells. The results indicate that the S. pombe pbh1 gene is up-regulated under metabolic oxidative stress in a Pap1-dependent manner.
Research Support, Non-U.S. Gov't
Diversity and Metal Tolerance of Nematode-Trapping Fungi in Pb-Polluted Soils
Ming-He Mo , Wei-Min Chen , Hao-Ran Yang , Ke-Qin Zhang
J. Microbiol. 2008;46(1):16-22.
DOI: https://doi.org/10.1007/s12275-007-0174-8
  • 43 View
  • 0 Download
  • 16 Scopus
AbstractAbstract
The diversity of nematode-trapping fungi (NTF) in two lead (Pb) mines in Yunnan Province, China was investigated in 2004. In total, 20 species belonging to five genera were identified from 500 samples collected at the Lanping and the Huize mines. Pb concentrations ranged from 216~7,150 mg/kg for the former and 132~13,380 mg/kg for the latter, respectively. The fungi were divided into five groups based on different trapping mechanisms. The trapping-net producer group contained the largest number of species, with nine. Two predators, Dactylellina ellipsosporum and Arthrobotrys oligospora, were found at frequencies of 32.85% and 15.41%, respectively. The diversity indexes of NTF were positively correlated with Pb pollution levels in both the Lanping Mine (r=0.66) and the Huize Mine (r=0.72), suggesting that the distribution of NTF was not negatively affected by Pb contamination. For most strains of a given species, there was no significant difference (P>0.01) in the Pb tolerance between the strains isolated from habitats with low or high Pb concentrations. However, Pb toxicity exerted adverse effects on trap formation and predacious capability of fungi. We discuss the possible metal tolerance mechanisms and their relationships to the survival strategy of NTF in Pb-polluted environments.
Distribution and activity of sulfate-reducing bacteria in lake soyang sediments
Jin, Ho Yong , Lee, Dong Hun , Zo, Young Gun , Kang Chan Su , Kim Sang Jong
J. Microbiol. 1996;34(2):131-136.
  • 41 View
  • 0 Download
AbstractAbstract
In order to known the extend of contribution to the degradation of organic materials and nutrient recycling by sulfate-reducing bacteria (SRB) and methane-producing bacteria (MPB) in sediment, the distribution and activity of these two groups of microorganisms were studied montly in 1994 at two sites, one littoral (Sanggulri) and the other profundal (DAM), in Lake Soyang. In the seasonal distribution of two microorganisms, SRB were 1.07 × 10^3 - 2.42 × 10^5 cells/g-dry weight at Sanggulri, 2.40 × 10^5 - 1.29 × 10^6 at Dam and MPB were 0.52 × 10^3 cells/g-dry weight at Sangguri and 1.44 × 10^3 - 6.89 × 10^3 at Dam. In these results, the density of SRB in Lake Soyang is much higher than other lakes. These high values might be due to higher sulfate concentration, 0.69-4.05 mM, than normal freshwater, 0.01-1.2 mM. And a good correlation of SRB and chlorophyll a concentration implied that the important environmental factor on distribution of SRB might be the concentration of available organic matter. In a comparison of sulfate-reducing rate and methane producing rate in 1995, the activity of SRB for the degradation of organic matter was higher than MPB by factor of 359. Conclusively SRB superior to MPB in the distribution and activity are more important anaerobic bacteria in Lake Soyang sediments.

Journal of Microbiology : Journal of Microbiology
TOP