Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "Mycoplasma"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Biophysical characterization of antibacterial compounds derived from pathogenic fungi Ganoderma boninense
Syahriel Abdullah , Yoon Sin Oh , Min-Kyu Kwak , KhimPhin Chong
J. Microbiol. 2021;59(2):164-174.   Published online December 23, 2020
DOI: https://doi.org/10.1007/s12275-021-0551-8
  • 62 View
  • 0 Download
  • 8 Web of Science
  • 7 Crossref
AbstractAbstract
There have been relatively few studies which support a link between Ganoderma boninense, a phytopathogenic fungus that is particularly cytotoxic and pathogenic to plant tissues and roots, and antimicrobial compounds. We previously observed that liquid-liquid extraction (LLE) using chloroformmethanol- water at a ratio (1:1:1) was superior at detecting antibacterial activities and significant quantities of antibacterial compounds. Herein, we demonstrate that antibacterial secondary metabolites are produced from G. boninense mycelia. Antibacterial compounds were monitored in concurrent biochemical and biophysical experiments. The combined
methods
included high performance thin-layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopy. The antibacterial compounds derived from mycelia with chloroform-methanol extraction through LLE were isolated via a gradient solvent elution system using HPTLC. The antibacterial activity of the isolated compounds was observed to be the most potent against Staphylococcus aureus ATCC 25923 and multidrug-resistant S. aureus NCTC 11939. GC-MS, HPLC, and FTIR analysis confirmed two antibacterial compounds, which were identified as 4,4,14α-trimethylcholestane (m/z = 414.75; lanostane, C30H54) and ergosta-5,7,22-trien-3β-ol (m/z = 396.65; ergosterol, C28H44O). With the aid of spectroscopic evaluations, ganoboninketal (m/z = 498.66, C30H42O6), which belongs to the 3,4-seco-27-norlanostane triterpene family, was additionally characterized by 2D-NMR analysis. Despite the lack of antibacterial potential exhibited by lanostane; both ergosterol and ganoboninketal displayed significant antibacterial activities against bacterial pathogens. Results provide evidence for the existence of bioactive compounds in the mycelia of the relatively unexplored phytopathogenic G. boninense, together with a robust method for estimating the corresponding potent antibacterial secondary metabolites.

Citations

Citations to this article as recorded by  
  • Anti-Staphylococcus aureus potential of compounds from Ganoderma sp.: A comprehensive molecular docking and simulation approaches
    Trang Thi Thu Nguyen, Trinh Thi Tuyet Nguyen, Hoang Duc Nguyen, Tan Khanh Nguyen, Phu Tran Vinh Pham, Linh Thuy Thi Tran, Hong Khuyen Thi Pham, Phu Chi Hieu Truong, Linh Thuoc Tran, Manh Hung Tran
    Heliyon.2024; 10(7): e28118.     CrossRef
  • Medium composition optimization and characterization of polysaccharides extracted from Ganoderma boninense along with antioxidant activity
    Qian-Zhu Li, Chuan Xiong, Wei Chee Wong, Li-Wei Zhou
    International Journal of Biological Macromolecules.2024; 260: 129528.     CrossRef
  • Plant Defense Inducers and Antioxidant Metabolites Produced During Oil Palm-Ganoderma boninense Interaction In Vitro
    Neda Shokrollahi, Chai-Ling Ho, Nur Ain Izzati Mohd Zainudin, Mohd As’wad Bin Abdul Wahab, Mui-Yun Wong
    Chemistry Africa.2023; 6(1): 499.     CrossRef
  • Identification of Antibacterial Metabolites from Endophytic Fungus Aspergillus fumigatus, Isolated from Albizia lucidior Leaves (Fabaceae), Utilizing Metabolomic and Molecular Docking Techniques
    Mai E. Hussein, Osama G. Mohamed, Ahlam M. El-Fishawy, Hesham I. El-Askary, Amira S. El-Senousy, Ahmed A. El-Beih, Eman S. Nossier, Ahmed M. Naglah, Abdulrahman A. Almehizia, Ashootosh Tripathi, Ahmed A. Hamed
    Molecules.2022; 27(3): 1117.     CrossRef
  • Bioactive Compounds of Ganoderma boninense Inhibited Methicillin-Resistant Staphylococcus aureus Growth by Affecting Their Cell Membrane Permeability and Integrity
    Yow-San Chan, Khim-Phin Chong
    Molecules.2022; 27(3): 838.     CrossRef
  • Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense
    Izwan Bharudin, Anis Farhan Fatimi Ab Wahab, Muhammad Asyraff Abd Samad, Ng Xin Yie, Madihah Ahmad Zairun, Farah Diba Abu Bakar, Abdul Munir Abdul Murad
    Biology.2022; 11(2): 251.     CrossRef
  • Screening for Antibacterial Activity of French Mushrooms against Pathogenic and Multidrug Resistant Bacteria
    Clément Huguet, Mélanie Bourjot, Jean-Michel Bellanger, Gilles Prévost, Aurélie Urbain
    Applied Sciences.2022; 12(10): 5229.     CrossRef
Research Support, Non-U.S. Gov'ts
Generation and Characterization of a Monoclonal Antibody with Specificity for Mycoplasma arginini
Yeon Sung Son , Hyo Jeong Hong
J. Microbiol. 2007;45(6):547-552.
DOI: https://doi.org/2610 [pii]
  • 44 View
  • 0 Download
AbstractAbstract
Previously, we generated monoclonal antibodies (MAbs) that bound to the surface of human embryonic stem cells (hESCs) in an attempt to discover new hESC-specific surface markers. In this study, MAb 47-235 (IgG1, κ) was selected for further characterization. The MAb bound to the surface of undifferentiated hESCs but did not bind to mouse ESCs or mouse embryonic fibroblast cells in flow cytometric analysis. The antibody immunoprecipitated a 47 kDa protein from the lysates of cell surface-biotinylated hESCs. Identification of the protein by quadrupole time of flight tandem mass spectrometry revealed that 47-235 binds to Ag 243-5 protein of Mycoplasma arginini. BM-Cyclin treatment of the hESCs that reacted with 47-235 resulted in loss of mycoplasma DNA and the reactivity to 47-235. Nevertheless, the hESCs that were reactive to 47-235 maintained self-renewal and pluripotency and thus could be differentiated into three embryonic germ layers.
Rapid One Step Detection of Pathogenic Bacteria in Urine with Sexually Transmitted Disease (STD) and Prostatitis Patient by Multiplex PCR Assay (mPCR)
Sang Rok Lee , Ji Min Chung , Young Gon Kim
J. Microbiol. 2007;45(5):453-459.
DOI: https://doi.org/2590 [pii]
  • 43 View
  • 0 Download
AbstractAbstract
We developed a multiplex PCR (mPCR) assay to simultaneously detect Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Ureaplasma urealyticum, Corynebacterium spp. and seudomona aeruginosa. This method employs a single tube and multiple specific primers which yield 200, 281, 346, 423, 542, and 1,427 bp PCR products, respectively. All the PCR products were easily detected by agarose gel electrophoresis and were sequenced to confirm the specificity of the reactions. To test this method, DNA extracted from urine samples was collected from 96 sexually transmitted disease or prostatitis patients at a local hospital clinical center, and were subjected to the mPCR assay. The resulting amplicons were cloned and sequenced to exactly match the sequences of known pathogenic isolates. N. gonorrhoeae and Corynebacterium spp. were the most frequently observed pathogens found in the STDs and prostatitis patients, respectively. Unexpectedly, P. aeruginosa was also detected in some of the STD and prostatitis samples. More than one pathogen species was found in 10% and 80.7% of STD and prostatitis samples, respectively, indicating that STD and prostatitis patients may have other undiagnosed and associates. The sensitivity of the assay was determined by sing purified DNA from six pathogenic laboratory strains and revealed that this technique could detect pathogenic DNA at concentrations ranging from 0.018 to 1.899 pg/μl. Moreover, the specificities of this assay were found to be highly efficient. Thus, this mPCR assay may be useful for the rapid diagnosis of causative infectious STDs and prostatitis. useful for the infectious STDs and prostatitis.
PCR-Based Detection of Mycoplasma Species
Hyeran Sung , Seung Hye Kang , Yoon jin Bae , Jin Tae Hong , Youn Bok Chung , Chong-Kil Lee , Sukgil Song
J. Microbiol. 2006;44(1):42-49.
DOI: https://doi.org/2338 [pii]
  • 41 View
  • 0 Download
AbstractAbstract
In this study, we describe our newly-developed sensitive two-stage PCR procedure for the detection of 13 common mycoplasmal contaminants (M. arthritidis, M. bovis, M. fermentans, M. genitalium, M. hominis, M. hyorhinis, M. neurolyticum, M. orale, M. pirum, M. pneumoniae, M. pulmonis, M. salivarium, U. urealyticum). For primary amplification, the DNA regions encompassing the 16S and 23S rRNA genes of 13 species were targeted using general mycoplasma primers. The primary PCR products were then subjected to secondary nested PCR, using two different primer pair sets, designed via the multiple alignment of nucleotide sequences obtained from the 13 mycoplasmal species. The nested PCR, which generated DNA fragments of 165-353 bp, was found to be able to detect 1-2 copies of the target DNA, and evidenced no cross-reactivity with the genomic DNA of related microorganisms or of human cell lines, thereby confirming the sensitivity and specificity of the primers used. The identification of contaminated species was achieved via the performance of restriction fragment length polymorphism (RFLP) coupled with Sau3AI digestion. The results obtained in this study furnish evidence suggesting that the employed assay system constitutes an effective tool for the disagnosis of mycoplasmal contamination in cell culture systems.

Journal of Microbiology : Journal of Microbiology
TOP