Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "CRISPRa"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Changes in the microbial community of Litopenaeus vannamei larvae and rearing water during different growth stages after disinfection treatment of hatchery water
Yafei Duan , Yapeng Tang , Jianhua Huang , Jiasong Zhang , Heizhao Lin , Shigui Jiang , Ruixuan Wang , Guofu Wang
J. Microbiol. 2020;58(9):741-749.   Published online July 24, 2020
DOI: https://doi.org/10.1007/s12275-020-0053-0
  • 61 View
  • 0 Download
  • 7 Web of Science
  • 7 Crossref
AbstractAbstract
Microbial communities greatly affect rearing water quality and the larvae health during shrimp hatchery periods. In this study, we investigated the microbial communities of rearing water and larvae of Litopenaeus vannamei after treating hatchery water with different kinds of chemical disinfectants: no disinfectants (Con), chlorine dioxide (ClO2), formaldehyde solution (HCHO), bleach powder (CaClO), and iodine (I2). The water and larval samples were collected from nauplius 6 (N6), zoea 1 (Z1), mysis 1 (M1), and postlarvae 1 (P1) shrimp growth periods. 16S rDNA high-throughput sequencing revealed that the bacterial composition of the rearing water was more complex than that of the larvae, and the bacterial community of the rearing water and the larvae fluctuated significantly at the P1 and Z1 periods, respectively. Disinfectants altered the bacterial diversity and composition of the rearing water and larvae. Specifically, in the rearing water of the P1 period, Proteobacteria abundance was increased in the HCHO group; while Bacteroidetes abundance was decreased in the ClO2, HCHO, and I2 groups but increased in the CaClO group. In the larvae of the Z1 period, Firmicutes (especially Bacillus class) abundance was increased in the CaClO group, but decreased in the ClO2, HCHO, and I2 groups. Network analyses revealed that the genera Donghicola, Roseibacterium, Candidatus-Cquiluna, and Nautella were enriched in the rearing water, while Halomonas, Vibrio, and Flavirhabdus had high abundance in the larvae. The survival of shrimp was influenced by disinfectants that were inconsistent with the bacterial community changes. These results will be helpful for using microbial characteristics to facilitate healthy shrimp nursery.

Citations

Citations to this article as recorded by  
  • Metagenomic insights into the rapid recovery mechanisms of prokaryotic community and spread of antibiotic resistance genes after seawater disinfection
    Jiaojiao Yan, Xinxu Zhang, Xinyong Shi, Jialin Wu, Ziang Zhou, Yawen Tang, Zhen Bao, Nan Luo, Demin Zhang, Jiong Chen, Huajun Zhang
    Water Research.2025; 271: 122887.     CrossRef
  • Comparative Microbiome Analysis of Artemia spp. and Potential Role of Microbiota in Cyst Hatching
    Euihyeon Lee, Kyun-Woo Lee, Yeun Park, Ayeon Choi, Kae Kyoung Kwon, Hye-Min Kang
    Marine Biotechnology.2024; 26(1): 50.     CrossRef
  • Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications
    Peng Wu, Yi Li, Aijun Yang, Xiangyu Tan, Jifeng Chu, Yifan Zhang, Yongxu Yan, Ju Tang, Hongye Yuan, Xiaoxing Zhang, Song Xiao
    ACS Sensors.2024; 9(6): 2728.     CrossRef
  • Effects of potassium monopersulfate on nitrification activity and bacterial community structure of sponge biocarrier biofilm in Litopenaeus vannamei aquaculture system
    Yazhi Luan, Yang Wang, Chao Liu, Libin Lv, Ailing Xu, Zhiwen Song
    Environmental Technology.2024; 45(17): 3354.     CrossRef
  • Investigating the impact of chlorine dioxide in shrimp-rearing water on the stomach microbiome, gill transcriptome, and infection-related mortality in shrimp
    Kentaro Imaizumi, Reiko Nozaki, Kayo Konishi, Hideaki Tagishi, Takanori Miura, Hidehiro Kondo, Ikuo Hirono
    Journal of Applied Microbiology.2024;[Epub]     CrossRef
  • Assessing the efficacy of bleaching powder in disinfecting marine water: Insights from the rapid recovery of microbiomes
    Yawen Tang, Huajun Zhang, Jiaojiao Yan, Nan Luo, Xuezhi Fu, Xiaoyu Wu, Jialin Wu, Changjun Liu, Demin Zhang
    Water Research.2023; 241: 120136.     CrossRef
  • Stocking Density Effects on Pacific White Shrimp Litopenaeus vannamei Hatchery Performance in Algal‐Bacterial Biofloc Systems
    Hu‐wei Chen, Da‐chuan Sun, Wen‐chang Liu, Shuang Li, Hong‐xin Tan
    North American Journal of Aquaculture.2023; 85(1): 3.     CrossRef
Review
[Minireview]Recent advances in genetic engineering tools based on synthetic biology
Jun Ren , Jingyu Lee , Dokyun Na
J. Microbiol. 2020;58(1):1-10.   Published online January 2, 2020
DOI: https://doi.org/10.1007/s12275-020-9334-x
  • 61 View
  • 0 Download
  • 25 Web of Science
  • 24 Crossref
AbstractAbstract
Genome-scale engineering is a crucial methodology to rationally regulate microbiological system operations, leading to expected biological behaviors or enhanced bioproduct yields. Over the past decade, innovative genome modification technologies have been developed for effectively regulating and manipulating genes at the genome level. Here, we discuss the current genome-scale engineering technologies used for microbial engineering. Recently developed strategies, such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, multiplex automated genome engineering (MAGE), promoter engineering, CRISPR-based regulations, and synthetic small regulatory RNA (sRNA)-based knockdown, are considered as powerful tools for genome-scale engineering in microbiological systems. MAGE, which modifies specific nucleotides of the genome sequence, is utilized as a genome-editing tool. Contrastingly, synthetic sRNA, CRISPRi, and CRISPRa are mainly used to regulate gene expression without modifying the genome sequence. This review introduces the recent genome-scale editing and regulating technologies and their applications in metabolic engineering.

Citations

Citations to this article as recorded by  
  • Bacterial genome reduction for optimal chassis of synthetic biology: a review
    Shuai Ma, Tianyuan Su, Xuemei Lu, Qingsheng Qi
    Critical Reviews in Biotechnology.2024; 44(4): 660.     CrossRef
  • Rational Design of High-Efficiency Synthetic Small Regulatory RNAs and Their Application in Robust Genetic Circuit Performance Through Tight Control of Leaky Gene Expression
    Jun Ren, Nuong Thi Nong, Phuong N. Lam Vo, Hyang-Mi Lee, Dokyun Na
    ACS Synthetic Biology.2024; 13(10): 3256.     CrossRef
  • From lab bench to farmers' fields: Co-creating microbial inoculants with farmers input
    Adegboyega Adeniji, Ayomide Emmanuel Fadiji, Shidong Li, Rongjun Guo
    Rhizosphere.2024; 31: 100920.     CrossRef
  • Development of synthetic small regulatory RNA for Rhodococcus erythropolis
    Lijuan Wang, Jie Hou, Kun Yang, Haonan Yu, Bo Zhang, Zhiqiang Liu, Yuguo Zheng
    Biotechnology Journal.2024;[Epub]     CrossRef
  • Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria
    Giho Kim, Ho Joon Kim, Keonwoo Kim, Hyeon Jin Kim, Jina Yang, Sang Woo Seo
    Nature Communications.2024;[Epub]     CrossRef
  • Potential applications of engineered bacteria in disease diagnosis and treatment
    Zhaowei Luo, Zhanghua Qi, Jie Luo, Tingtao Chen
    Microbiome Research Reports.2024;[Epub]     CrossRef
  • Wastewater treatment from a science faculty during the COVID-19 pandemic by using ammonium-oxidising and heterotrophic bacteria
    Lucas D. Pedroza-Camacho, Paula A. Ospina-Sánchez, Felipe A. Romero-Perdomo, Nury G. Infante-González, Diana M. Paredes-Céspedes, Balkys Quevedo-Hidalgo, Viviana Gutiérrez-Romero, Claudia M. Rivera-Hoyos, Aura M. Pedroza-Rodríguez
    3 Biotech.2024;[Epub]     CrossRef
  • Synthetic bacteria for the detection and bioremediation of heavy metals
    Thi Duc Thai, Wonseop Lim, Dokyun Na
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef
  • An Account of Models of Molecular Circuits for Associative Learning with Reinforcement Effect and Forced Dissociation
    Zonglun Li, Alya Fattah, Peter Timashev, Alexey Zaikin
    Sensors.2022; 22(15): 5907.     CrossRef
  • CRISPR-Cas9 based stress tolerance: New hope for abiotic stress tolerance in chickpea (Cicer arietinum)
    Muhammad Khuram Razzaq, Muhammad Akhter, Ramala Masood Ahmad, Kaiser Latif Cheema, Aiman Hina, Benjamin Karikari, Ghulam Raza, Guangnan Xing, Junyi Gai, Mohsin Khurshid
    Molecular Biology Reports.2022; 49(9): 8977.     CrossRef
  • Microbes of traditional fermentation processes as synthetic biology chassis to tackle future food challenges
    Adán Andrés Ramírez Rojas, Razan Swidah, Daniel Schindler
    Frontiers in Bioengineering and Biotechnology.2022;[Epub]     CrossRef
  • A synthetic ‘essentialome’ for axenic culturing of ‘Candidatus Liberibacter asiaticus’
    Lulu Cai, Mukesh Jain, Alejandra Munoz-Bodnar, Jose C. Huguet-Tapia, Dean W. Gabriel
    BMC Research Notes.2022;[Epub]     CrossRef
  • In silico genome mining of potential novel biosynthetic gene clusters for drug discovery from Burkholderia bacteria
    Khorshed Alam, Md Mahmudul Islam, Kai Gong, Muhammad Nazeer Abbasi, Ruijuan Li, Youming Zhang, Aiying Li
    Computers in Biology and Medicine.2022; 140: 105046.     CrossRef
  • Developing of specific monoclonal recombinant antibody fused to alkaline phosphatase (AP) for one-step detection of fig mosaic virus
    Niloofar Rajabi, Mohammad Reza Safarnejad, Farshad Rakhshandehroo, Masoud Shamsbakhsh, Hodjattallah Rabbani
    3 Biotech.2022;[Epub]     CrossRef
  • Identification of efficient prokaryotic cell-penetrating peptides with applications in bacterial biotechnology
    Hyang-Mi Lee, Jun Ren, Kha Mong Tran, Byeong-Min Jeon, Won-Ung Park, Hyunjoo Kim, Kyung Eun Lee, Yuna Oh, Myungback Choi, Dae-Sung Kim, Dokyun Na
    Communications Biology.2021;[Epub]     CrossRef
  • Flapjack: Data Management and Analysis for Genetic Circuit Characterization
    Guillermo Yáñez Feliú, Benjamín Earle Gómez, Verner Codoceo Berrocal, Macarena Muñoz Silva, Isaac N. Nuñez, Tamara F. Matute, Anibal Arce Medina, Gonzalo Vidal, Carolus Vitalis, Jonathan Dahlin, Fernán Federici, Timothy J. Rudge
    ACS Synthetic Biology.2021; 10(1): 183.     CrossRef
  • Synthetic small regulatory RNAs in microbial metabolic engineering
    Wen-Hai Xie, Hong-Kuan Deng, Jie Hou, Li-Juan Wang
    Applied Microbiology and Biotechnology.2021; 105(1): 1.     CrossRef
  • Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly
    Rosanna Young, Matthew Haines, Marko Storch, Paul S. Freemont
    Metabolic Engineering.2021; 63: 81.     CrossRef
  • Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions
    Hoofar Shokravi, Zahra Shokravi, Mahshid Heidarrezaei, Hwai Chyuan Ong, Seyed Saeid Rahimian Koloor, Michal Petrů, Woei Jye Lau, Ahmad Fauzi Ismail
    Chemosphere.2021; 285: 131535.     CrossRef
  • Construction of a tunable promoter library to optimize gene expression in Methylomonas sp. DH-1, a methanotroph, and its application to cadaverine production
    Hyang-Mi Lee, Jun Ren, Myeong-Sang Yu, Hyunjoo Kim, Woo Young Kim, Junhao Shen, Seung Min Yoo, Seong-il Eyun, Dokyun Na
    Biotechnology for Biofuels.2021;[Epub]     CrossRef
  • Trans-acting regulators of ribonuclease activity
    Jaejin Lee, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(4): 341.     CrossRef
  • RNA-Sequencing Analyses of Small Bacterial RNAs and their Emergence as Virulence Factors in Host-Pathogen Interactions
    Idrissa Diallo, Patrick Provost
    International Journal of Molecular Sciences.2020; 21(5): 1627.     CrossRef
  • Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment
    Sun-Wook Jeong, Yong Jun Choi
    Molecules.2020; 25(21): 4916.     CrossRef
  • Nachweismethoden von SARS‐CoV‐2
    Martin Witt, Christopher Heuer, Lina Miethke, John‐Alexander Preuß, Johanna Sophie Rehfeld, Torsten Schüling, Cornelia Blume, Stefanie Thoms, Frank Stahl
    Chemie in unserer Zeit.2020; 54(6): 368.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP