Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "AHL-lactonase"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov't
D101 is critical for the function of AttJ, a repressor of quorum quenching system in Agrobacterium tumefaciens
Chao Wang , Chunlan Yan , Yong-Gui Gao , Lian-Hui Zhang
J. Microbiol. 2015;53(9):623-632.   Published online August 1, 2015
DOI: https://doi.org/10.1007/s12275-015-5100-x
  • 44 View
  • 0 Download
  • 1 Scopus
AbstractAbstract
The quorum quenching system of Agrobacterium tumefaciens is specifically activated upon entering the stationary phase. Evidence has shown that this system includes two key components: the IclR-type transcriptional factor AttJ (also named as BlcR) and the AHL-lactonase AttM (also named as BlcC). At exponential phase, AttJ binds to the promoter region of attM and thus suppresses the expression of attM. At stationary phase, however, the small molecule SSA directly binds to AttJ and relieves its inhibition of AttJ and thereby triggers the expression of attM. While the regulation of AttM has been extensively investigated, little is known about the regulation of AttJ. In this study, we demonstrated the D101 amino acid of AttJ is essential for the AttJ function. In vitro, the variant protein of AttJD101H appeared to be readily aggregated. In vivo, the D101H mutation in AttJ entirely abolished the inhibitory activity of AttJ and overexpressed attM in A. tumefaciens A6. In addition, D101H mutation led to an overexpression of attJ, indicating an auto-regulatory mechanism for the attJ regulation. Put together, these findings demonstrate that D101 is an important amino acid for the transcription activity of AttJ and the transcription of attJ is regulated by a negative feedback loop. These results expand previous biochemical characterization of AttJ and provide new mechanistic insights into the regulation of quorum quenching in A. tumefaciens.
Quorum Sensing and Quorum-Quenching Enzymes
Yi-Hu Dong , Lian-Hui Zhang
J. Microbiol. 2005;43(1):101-109.
  • 44 View
  • 0 Download
AbstractAbstract
To gain maximal benefit in a competitive environment, single-celled bacteria have adopted a community genetic regulatory mechanism, known as quorum sensing (QS). Many bacteria use QS signaling systems to synchronize target gene expression and coordinate biological activities among a local population. N-acylhomoserine lactones (AHLs) are one family of the well-characterized QS signals in Gram-negative bacteria, which regulate a range of important biological functions, including virulence and biofilm formation. Several groups of AHL-degradation enzymes have recently been identified in a range of living organisms, including bacteria and eukaryotes. Expression of these enzymes in AHL-dependent pathogens and transgenic plants efficiently quenches the microbial QS signaling and blocks pathogenic infections. Discovery of these novel quorum quenching enzymes has not only provided a promising means to control bacterial infections, but also presents new challenges to investigate their roles in host organisms and their potential impacts on ecosystems.

Journal of Microbiology : Journal of Microbiology
TOP