Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "10-hydroxycamptothecin"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
De novo transcriptome assembly and characterization of the 10-hydroxycamptothecin-producing Xylaria sp. M71 following salicylic acid treatment
Xiaowei Ding , Kaihui Liu , Yonggui Zhang , Feihu Liu
J. Microbiol. 2017;55(11):871-876.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7173-1
  • 53 View
  • 0 Download
  • 6 Crossref
AbstractAbstract
In the present study, we identified genes that are putatively involved in the production of fungal 10-hydroxycamptothecin via transcriptome sequencing and characterization of the Xylaria sp. M71 treated with salicylic acid (SA). A total of 60,664,200 raw reads were assembled into 26,044 unigenes. BLAST assigned 8,767 (33.7%) and 10,840 (41.6%) unigenes to 40 Gene Ontology (GO) annotations and 108 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 3,713 unigenes comprising 1,504 upregulated and 2,209 downregulated unigenes were found to be differentially expressed between SA-induced and control fungi. Based on the camptothecin biosynthesis pathway in plants, 13 functional genes of Xylaria sp. M71 were mapped to the mevalonate (MVA) pathway, suggesting that the fungal 10-hydroxycamptothecin is produced via the MVA pathway. In summary, analysis of the Xylaria sp. M71 transcriptome allowed the identification of unigenes that are putatively involved in 10-hydroxycamptothecin biosynthesis in fungi.

Citations

Citations to this article as recorded by  
  • The hidden treasures in endophytic fungi: a comprehensive review on the diversity of fungal bioactive metabolites, usual analytical methodologies, and applications
    Jefferson Brendon Almeida dos Reis, Adriana Sturion Lorenzi, Danilo Batista Pinho, Patrícia Cardoso Cortelo, Helson Mario Martins do Vale
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Genomic and transcriptomic analysis of camptothecin producing novel fungal endophyte: Alternaria burnsii NCIM 1409
    Shakunthala Natarajan, Boas Pucker, Smita Srivastava
    Scientific Reports.2023;[Epub]     CrossRef
  • Plant probiotics – Endophytes pivotal to plant health
    Shiv Shanker Pandey, Rahul Jain, Priyanka Bhardwaj, Ankita Thakur, Manju Kumari, Shashi Bhushan, Sanjay Kumar
    Microbiological Research.2022; 263: 127148.     CrossRef
  • Using Next-Generation Sequencing Technology to Explore Genetic Pathways in Endophytic Fungi in the Syntheses of Plant Bioactive Metabolites
    Monika Bielecka, Bartosz Pencakowski, Rosario Nicoletti
    Agriculture.2022; 12(2): 187.     CrossRef
  • Microbial endophytes: application towards sustainable agriculture and food security
    Vagish Dwibedi, Santosh Kumar Rath, Mahavir Joshi, Rajinder Kaur, Gurleen Kaur, Davinder Singh, Gursharan Kaur, SukhminderJit Kaur
    Applied Microbiology and Biotechnology.2022; 106(17): 5359.     CrossRef
  • How and why do endophytes produce plant secondary metabolites?
    Sachin Naik, Ramanan Uma Shaanker, Gudasalamani Ravikanth, Selvadurai Dayanandan
    Symbiosis.2019; 78(3): 193.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP