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Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a globally recognized foodborne pathogen that affects both 
animals and humans. Endoribonucleases mediate RNA processing and degradation in the adaptation of bacteria to environ-
mental changes and have been linked to the pathogenicity of S. Typhimurium. Not much is known about the specific regula-
tory mechanisms of these enzymes in S. Typhimurium, particularly in the context of environmental adaptation. Thus, this 
study carried out a comparative transcriptomic analysis of wild-type S. Typhimurium SL1344 and its mutant (∆rnc), which 
lacks the rnc gene encoding RNase III, thereby elucidating the detailed regulatory characteristics that can be attributed to the 
rnc gene. Global gene expression analysis revealed that the ∆rnc strain exhibited 410 upregulated and 301 downregulated 
genes (fold-change > 1.5 and p < 0.05), as compared to the wild-type strain. Subsequent bioinformatics analysis indicated 
that these differentially expressed genes are involved in various physiological functions, in both the wild-type and ∆rnc 
strains. This study provides evidence for the critical role of RNase III as a general positive regulator of flagellar-associated 
genes and its involvement in the pathogenicity of S. Typhimurium.
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Introduction

Salmonella poses a substantial public health threat, caus-
ing over 300,000 deaths annually, particularly in develop-
ing countries (Buckle et al., 2012; Galán, 2021; Majowicz 
et al., 2010; Moffatt et al., 2016). Salmonella is classified 
into hundreds of serovars based on surface antigenic com-
position (Brenner et al., 2000; Popoff et al., 2000). Among 
them, Salmonella enterica serovar Typhimurium (S. Typh-
imurium) is an important facultative pathogen that causes 
food poisoning and gastroenteritis in humans and animals 
(Galán, 2021; Smith et al., 2016).

The bacterial flagellum, a large filamentous organelle, 
plays a crucial role in enabling bacterial motility across 
various environments, including liquids and solid sur-
faces (Morimoto & Minamino, 2021). S. Typhimurium 

has multiple flagellar on its cell body. The flagellum con-
sists of five distinct structural and functional parts: basal 
body, hook, junction, filament, and filament cap. Flagellar 
synthesis and assembly is a highly ordered, hierarchical, 
and complex process involving more than 200 genes on 
more than 70 operons (Aldridge & Hughes, 2002; Che-
vance & Hughes, 2008; Yue et al., 2023). These genes 
are divided into three classes based on their transcription 
order (Aldridge & Hughes, 2002; Wang et al., 2022). Class 
I includes two genes in a single operon, flhDC, which are 
transcribed early in the process and encode important reg-
ulatory proteins, FlhD and FlhC (Kutsukake et al., 1990; 
Yanagihara et al., 1999). Four FlhD and two FlhC proteins 
assemble into the FlhD4C2 complex, which functions as a 
transcription factor for Class II genes (Tomoyasu et al., 
2003; Wang et al., 2006). The products of Class II genes 
form the basal flagellar structure and hook-basal body 
complex, while Class III genes encode proteins required 
for filament formation, flagellar rotation (motility), and 
chemotaxis (Chilcott & Hughes, 2000; Ide et al., 1999; 
Karlinsey et al., 2000; Minamino et al., 2021; Tomoyasu 
et  al., 2003). The presence of flagellar is also closely 
associated with the pathogenicity of S. Typhimurium 
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(Lee et al., 2022; Miao et al., 2010; Stecher et al., 2004, 
2007; Stewart et al., 2011). Upon entry into the intestinal 
tract, S. Typhimurium utilizes its flagellum to navigate 
viscous fluids, facilitating attachment to host cells. This 
strategy enhances infection efficiency and colonization. 
The flagellum then becomes a major target antigen for the 
host immune system (Minamino et al., 2021; Wang et al., 
2022).

Ribonucleases (RNases) are enzymes that regulate the 
processing and degradation of target mRNAs and trans-
acting small non-coding RNAs (Bechhofer & Deutscher, 
2019; Deutscher, 2021; Mohanty & Kushner, 2018). Recent 
studies have shown that RNase-mediated regulation is more 
widespread than previously thought. For instance, RNase 
III is an endoribonuclease with specific activity for double-
stranded RNA, which acts as a homodimer while playing 
a key role in the maturation of ribosomal RNAs (rRNAs) 
and transfer RNAs. In addition, it participates in RNA bio-
genesis to regulate gene expression (Gordon et al., 2017; 
Lee et al., 2021a; Lim et al., 2015; Matsunaga et al., 1996; 
Svensson & Sharma, 2021). Due to its specificity for double-
stranded RNA, RNase III has also been implicated in the 
processing of antisense RNAs and their targets (Lee et al., 
2019; Thomason et al., 2015). Furthermore, there are many 
reports that indicate the involvement of RNase III in the 
pathogenicity of pathogenic bacteria. For example, RNase 
III affects the virulence of Staphylococcus aureus by cleav-
ing the RNAIII transcript (Boisset et al., 2007; Huntzinger 
et al., 2005). S. Typhimurium expressing a mutant form of 
RNase III has been shown to exhibit attenuated virulence, 
impaired motility, and reduced replication in Galleria mel-
lonella and mice (Viegas et al., 2013). A recent study also 
demonstrated that RNase III indirectly affects the expression 
of S. Typhimurium pathogenicity island-1 under anaerobic 
conditions (Lee et al., 2021c). Transcriptional repression of 
the rnc gene, mediated by the FNR pathway (active under 
aerobic conditions), enables increased expression of RNase 
G. This, in turn, accelerates hns mRNA degradation, thereby 
downregulating hns mRNA levels in S. Typhimurium (Lee 
et al., 2021c). Despite wide research on the roles of endori-
bonucleases in bacterial adaptation and pathogenicity, there 
is a lack of knowledge on the specific regulatory mecha-
nisms of these enzymes in S. Typhimurium, particularly in 
the context of environmental adaptation.

This study explored RNase III-regulated properties 
through comparative global gene expression analyses and 
phenotypic tests, including motility, biofilm formation, and 
host cell invasion, in both the S. Typhimurium SL1344 wild-
type (WT) and ∆rnc strains, revealing RNase III as a general 
positive regulator of flagellar-associated genes that coordi-
nates a comprehensive genetic and physiological regulatory 
process necessary for pathogenicity in S. Typhimurium.

Materials and Methods

Animals

Mouse feeding and experimental procedures were performed 
as described previously (Lee et al., 2021c; Song et al., 2019). 
Nara Biotech supplied the specific pathogen-free 4-week-old 
female BALB/c mice (n = 34) used in the study.

Bacterial Strains and Plasmid Construction

S. Typhimurium and Escherichia coli strains were cultured 
at 37 °C in Luria–Bertani (LB) medium (BD Biosciences) 
containing specific antibiotics (100 μg/ml ampicillin and/or 
5 μg/ml tetracycline; Sigma-Aldrich).

Tables 1 and 2 contain details about the bacterial strains, 
plasmids, and primers used in this study. The ∆rnc strain 
was constructed as described previously (Lee et al., 2021c).

Briefly, pSt-rnc was constructed by amplifying the cod-
ing region of S. Typhimurium rnc, which then digested with 
XhoI and BamHI and ligated into pACYC177. To construct 
the pET-Ecrnc plasmid expressing E. coli RNase III, NdeI 
and XhoI sites were generated using PCR methods. The PCR 
products were digested with NdeI and XhoI and then cloned 
into pET-22b( +) (Novagen).

Cell Lines and Culture Conditions

Human colorectal intestinal epithelial carcinoma cells 
(HCT116) were cultured in McCoy's 5A medium (ATCC), 
supplemented with 10% (v/v) heat-inactivated fetal bovine 
serum (Avantor) and 1% (v/v) penicillin–streptomycin solu-
tion (Gibco). The cell lines were cultured at 37 °C, in a 
humidified atmosphere containing 5% CO2.

Purification of E. coli RNase III

The purification of His-tagged E. coli RNase III was per-
formed as described previously (Sim et al., 2010).

Preparation of RNase III Protein and CpG‑DNA 
Co‑Encapsulated in Liposome Complexes

Sigma-Aldrich supplied the liposomes 1, 2-dioleoyl-sn-
glycero-3-phosphoethanolamine (DOPE) and cholesteryl 
hemisuccinate (CHEMS). Briefly, DOPE and CHEMS 
were mixed in ethanol at a molar ratio of 1:1. The mixture 
was evaporated with nitrogen gas to produce a solvent-free 
lipid film, which was then resuspended in a mixture contain-
ing equal volumes of water-soluble CpG-DNA and RNase 
III protein. The CpG-DNA comprises 20 bases containing 
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Table 1   Bacterial strains and plasmids used in this study

a See Materials and Methods for a detailed plasmid description scheme
Abbreviation: AmpR, ampicillin resistance; KmR, kanamycin resistance; TcR, tetracycline resistance; StrR, streptomycin resistance

Strains or plasmids Relevant characteristics References

S. Typhimurium
SL1344 hisG46, rpsL, StrR Hoiseth and Stocker (1981)
∆rnc Same as SL1344, but rnc-14::Tn10, TcR Lee et al., (2021c)
E. coli
DH5α F−, φ80dlacZ∆M15, ∆(lacZYA-argF)U169, recA1, endA1, 

hsdR17(rK
−mK

+), phoA, supE44, λ−, thi-1, gyrA96, relA1
Laboratory strain

BL21(DE3) F−, ompT, hsdSB(rB
−, mB

−), gal, dcm, (DE3) Thermo Fisher Scientific
Plasmidsa

pACYC177 p15A ori, AmpR, KmR Chang and Cohen (1978)
pSt-rnc pACYC177 containing the S. Typhimurium rnc gene, AmpR This study
pET22b(+) ColE1 ori, bla, lacI, T7p, Cloning vector with His tag, AmpR Novagen
pET-Ecrnc pET22b(+) containing the E. coli rnc gene with His tag, AmpR This study

Table 2   Primers used in this 
study

Primers Sequences (5′–3′)

Construction of pSt-rnc
St-rnc F (XhoI) ATC​TCG​AGA​AAT​TCC​CTA​AGA​CTA​ACGA​
St-rnc R (BamHI) AAC​GGA​TCC​GTC​ATT​CCA​ACT​CCA​GTT​TTT​
Construction of pET-Ecrnc
Ecrnc F (NdeI) TTC​ATA​TGA​ACC​CCA​TCG​TAA​TTA​ATCG​
Ecrnc R (XhoI) AAC​TCG​AGT​TCC​AGC​TCC​AGT​TTT​TTCA​
For qRT-PCR
RT-gdh-F TTC​CTA​CTC​TGG​CCT​CAA​CG
RT-gdh-R TTC​CGC​TTC​AAA​CCA​GGT​TG
RT-rng-F ACC​GTA​ATC​TCG​ACG​ACA​CC
RT-rng-R GCG​GCG​ATG​ATC​TTC​ATT​AT
RT-ydiV-F CAG​CAG​CGA​GCT​GAA​ATG​AT
RT-ydiV-R CGC​AAA​CAT​CGC​CTC​AGT​AT
RT-pnp-F TAC​CGC​ATC​ACC​GAT​AAA​CA
RT-pnp-R ATG​TCT​TTT​TCA​CGG​CCA​TC
RT-flhD-F CGC​CTC​GGT​ATC​AAC​GAA​GA
RT-flhD-R CTC​CGC​CAG​TTT​GAC​CAT​CT
RT-fliA-F CTT​ACC​CAG​TTT​GGT​GCG​TA
RT-fliA-R CGA​GCA​ACT​GGT​GTT​AAC​GC
RT-fliC-F CGC​AGT​AAA​GAG​AGG​ACG​TT
RT-fliC-R GGG​CAA​CAC​CGT​AAA​CAA​CC
RT-flgE-F CGG​ACC​CTG​TAC​CGT​CTA​AA
RT-flgE-R AAG​GAA​GCT​GAG​GGA​GAA​GG
RT-cheZ-F GAT​CTG​ACG​GGT​CAG​GTG​AT
RT-cheZ-R ACC​TGA​TCC​TGA​CTG​GCA​AC
RT-tsr-F ATG​GGC​AAC​AAC​GAT​CTC​TC
RT-tsr-R CTG​TCT​CTG​ACG​CAC​TCA​GC
RT-flgH-F AGT​AAA​AGC​TCG​TCG​GCA​AA
RT-flgH-R AAA​GGT​ATT​GCT​GGC​ATT​CG
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three CpG motifs (underlined; 5′-AGCAG​CGTTCGTGT​
CGGCCT-3′). The resuspended mixture underwent vigor-
ous stirring for 30 min, at 25 °C. After adjustment of pH to 
a level of 7.0, the lipoplex solution was sonicated for 30 s, 
filtered through a 0.22-μm filter, and subjected to three 
freeze–thaw cycles with liquid nitrogen (Kim et al., 2011, 
2015).

Mice and Immunization

The mice were maintained under specific pathogen-free 
conditions and intraperitoneally injected with RNase III 
protein (50 μg) and CpG-DNA (50 μg) co-encapsulated in 
a DOPE:CHEMS complex, three times, at 10 day intervals 
(Kim et al., 2011, 2015).

Production of Mouse Anti‑RNase III Monoclonal 
Antibody

Splenocytes obtained from RNase III-immunized mice were 
fused with mouse myeloma cells (SP2/0) using a polyethyl-
ene glycol solution (Sigma-Aldrich). The hybridoma clones 
were selected in hypoxanthine-aminopterine-thymidine and 
hypoxanthine-thymidine media (both from Sigma-Aldrich), 
following the standard hybridoma production protocol 
(Yokoyama et al., 2006). The selected hybridoma cells were 
injected into mice to produce ascites fluid. The anti-RNase 
III monoclonal antibody was purified from the ascites fluid 
using protein A column chromatography (Bio-Rad Labora-
tories) (Kim et al., 2011, 2015).

Western Blot Analysis

Proteins were separated and analyzed using western blot, as 
described previously (Lee et al., 2021c). GAPDH was used 
as a loading control.

Growth Curve

Pre-cultured S. Typhimurium strains (WT, ∆rnc, and ∆rnc-
comp) were diluted in LB medium containing ampicillin 
(100 μg/ml) and incubated at 37 °C for 10 h, in a shak-
ing incubator maintained at 240 rpm. The growth rate of S. 
Typhimurium was monitored by measuring the cell density 
[in terms of the optical density at the wavelength of 600 nm 
(OD600)] at the indicated time-points. The experiments were 
conducted in triplicate.

RNA Isolation

S. Typhimurium SL1344 WT and ∆rnc strains containing 
pACYC177 were grown at 37 °C in LB medium supplemented 
with ampicillin (100 μg/ml). The cultured cells were then 
diluted 1:100 in the same fresh medium and incubated at 37 
°C until they reached an OD600 of 1.0. Total RNA was isolated 
using an RNeasy Mini Kit (Qiagen), following the manufac-
turer’s instructions. RNA quality was assessed on an Agilent 
2100 Bioanalyzer using the RNA 6000 Nano Chip (Agilent 
Technologies), and RNA quantification was performed on an 
ND-2000 spectrophotometer (Thermo Fisher Scientific).

Library Preparation and RNA‑Sequencing (RNA‑seq)

For the control and test RNAs, rRNA was depleted from 1 μg 
of total RNA using the RiboCop rRNA Depletion for Bacteria 
Probe Mix G ± Kit (Lexogen). Following the manufacturer’s 
instructions, the NEBNext Ultra II Directional RNA-seq Kit 
(New England BioLabs) was used for library construction, and 
the rRNA-depleted RNAs were used for cDNA synthesis and 
shearing. Illumina indexes 1–12 were used for indexing, fol-
lowed by PCR enrichment. Libraries were screened for aver-
age fragment size using the TapeStation HS D1000 Screen 
Tape (Agilent Technologies) and a library quantification kit 
on a StepOne Real-Time PCR System (Life Technologies). 
High-throughput sequencing was performed as paired-end 100 
sequencing on NovaSeq 6000 System (Illumina).

Data Analysis

To generate the alignment file, paired-end RNA-seq reads 
were aligned to the S. Typhimurium SL1344 genomic DNA 
reference (GCF_000210855.2 ASM21085v2) from the 
National Center for Biotechnology Information database, 
using the Bowtie2 software tool. Differentially expressed 
genes (DEGs) were determined based on counts from unique 
and multiple alignments, using the EdgeR package (Gentle-
man et al., 2004) within R. The screening criteria included 
genes with raw p values < 0.05 and fold-change > 1.5 (Na, 
2020). The alignment file was also used for transcript assem-
bly. The trimmed mean of the M-values and counts per mil-
lion mapped reads normalization methods were applied to 
the raw read counts. Following that, the p values for compar-
isons between samples were calculated using the Student’s 
t-test and analysis of variance.

Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) Enrichment Analysis 
of DEGs

The KEGG database was used to obtain a database of meta-
bolic pathways, regulons, and genomic islands of related 
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species (Kanehisa & Goto, 2000). GO terms were obtained 
from the UniProt database (The UniProt Consortium, 2018) 
through a programmatic query. We utilized these functional 
annotation data for enrichment analysis, to enhance our com-
prehension of the functions and metabolic pathways asso-
ciated with the DEGs. Fisher’s exact probability test was 
used as a statistical method to determine the relationship 
between a gene set and pathways or GO terms. Pathways 
and GO terms that were significant (p < 0.05) have been dis-
played in graphs. The protein network was generated using 
the STRING version 11.0 web tool (https://​string-​db.​org) 
(Szklarczyk et al., 2019).

Confirmation of DEGs Using Quantitative Reverse 
Transcription PCR (qRT‑PCR)

The RNA-seq data were validated by means of qRT-PCR 
analysis of select genes. Total cellular RNA extraction was 
performed as described above and qRT-PCR was performed 
as described previously (Lee et al., 2021c).

Measurement of Motility Capacity

To evaluate the swimming and swarming motilities, S. 
Typhimurium strains were initially incubated overnight on 
LB agar, at 37 °C. Subsequently, a single colony from the 
agar surface was inoculated onto 0.3% LB agar (for swim-
ming motility) or 0.5% LB agar containing 0.5% glucose 
(for swarming motility) and the inoculated plates were then 
incubated for 9 h at 37 °C. The distances from the inocula-
tion zone on the agar plates to the edge of the swimming 
and swarming zones were measured using ImageJ software 
(National Institutes of Health). This experiment was con-
ducted in five parallel runs and three replicates each (Has 
et al., 2023; Lee et al., 2021b, 2022).

Quantification of Biofilm Formation

Biofilm formation was measured by assessing the adher-
ence of S. Typhimurium strains (WT, ∆rnc, and ∆rnccomp) to 
borosilicate tube wells, as described previously (Has et al., 
2023; Lee et al., 2021b).

Measurement of Flagellar Number and Length

To investigate the impact of RNase III expression on flagellar 
number and length, the strains utilized in the motility assay 
underwent further analysis by means of transmission elec-
tron microscopy. Cells were grown at 37 °C in LB medium 
until they reached an OD600 of 1.0. The cultures were diluted 
with triple distilled water and transferred onto Formvar film, 
followed by negative staining with 1% phosphotungstic acid. 
Samples were observed using a JEM-2100F transmission 

electron microscope (JEOL). Flagellar length was deter-
mined using ImageJ software.

Cell Infection Assay

The cell infection assay was performed as described previ-
ously (Lee et al., 2021c).

Trypan Blue Exclusion Assay

HCT116 cells were seeded at a density of 1 × 104 cells/well 
and incubated for 24 h in an incubator containing 5% CO2, 
at 37 °C. Before starting the experiment, antibiotic-contain-
ing McCoy’s 5A medium was replaced with antibiotic-free 
McCoy’s 5A medium. HCT116 cells were infected with S. 
Typhimurium strains at a multiplicity of infection of 100 
and incubated for 1, 2, 3, and 4 h. Following that, the cells 
were washed with serum-free McCoy’s 5A medium contain-
ing gentamicin (100 μg/ml) and phosphate-buffered saline. 
After trypsin-ethylenediaminetetraacetic acid-mediated cell 
harvesting, viable and dead cells were counted using trypan 
blue staining. The percentage of viable cells was calculated 
as follows: viable cells (%) = (total number of viable cells/
ml of aliquot / total number of cells/ml of aliquot) × 100.

Quantification and Statistical Analysis

Statistical details for all experiments are provided in the fig-
ure legends. Multiple comparisons were performed using 
the Student–Newman–Keuls test, in SAS version 9.2 (SAS 
Institute), while control comparisons were conducted using 
Student’s t-tests in both SAS version 9.2 and SigmaPlot 10.0 
(Systat Software). Data are presented as mean ± standard 
error of the mean, with a p-value of < 0.05 indicating statisti-
cal significance.

Results

RNase III Expression Affects the mRNA Abundance 
of a Subset of Genes in S. Typhimurium

RNase III, a member of the double-stranded RNA-specific 
endoribonuclease family, is present in essentially all bac-
teria and plays numerous roles in RNA metabolism (Bech-
hofer & Deutscher, 2019; Deutscher, 2021; Lim et al., 2015; 
Mohanty & Kushner, 2018). Furthermore, we found homo-
logues of RNase III in closely related Enterobacteriaceae 
(Fig. S1). Among them, RNase III of S. Typhimurium was 
found to be highly homologous to that of E. coli, with a 
98.67% amino acid sequence identity (Fig. 1A).

We first investigated whether RNase III levels 
affect S. Typhimurium growth. To evaluate this, the 

https://string-db.org
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cell densities of three S. Typhimurium strains, wild-
type (WT; SL1344 + pACYC177), rnc-deleted (∆rnc; 
SL1344rnc + pACYC177), and rnc-complemented (∆rnc-
comp; SL1344rnc + pSt-rnc), were monitored at different 
time-points (h). The ∆rnc strain exhibited a lower growth 
rate than the WT strain. However, the growth rate was 
restored to that of the WT strain upon complementation with 
the rnc gene (∆rnccomp; Fig. 1B). This phenomenon has been 
previously observed as well for RNase III expression, using 

the slow-growing phenotype of E. coli cells lacking the rnc 
gene (Sim et al., 2010). Western blot analysis revealed that 
the ∆rnccomp cells displayed ~ 6.4-fold higher RNase III 
protein levels than the WT strain (Fig. 1C). However, the 
increased expression levels of RNase III did not affect the 
growth rates of the ∆rnccomp strain (Fig. 1B, C).

To investigate the potential impact of RNase III expres-
sion on mRNA levels, total RNAs extracted from both the 
WT and ∆rnc strains were subjected to RNA-seq analysis. 
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DEG analysis was performed using four methods: scat-
ter plots, heatmaps, GO enrichment analysis, and KEGG 
pathway enrichment analysis. Scatter plots were used to 
display the overall distribution of DEGs in the WT and 
∆rnc strains. Fold-change > 1.5 and p < 0.05 were used as 
selection criteria for the DEGs. This study identified 711 
significant DEGs (301 downregulated and 410 upregu-
lated) in the experimental group (Fig. 1D).

We employed a heatmap and hierarchical clustering 
method to determine the expression patterns of differ-
ent genes. As genes with same or similar expression 
patterns may have similar functions or be involved in 
the same metabolic process or cellular pathway, these 
were clustered into classes, to predict the function of 
unknown genes or discover new functions of known 
genes. Although the ∆rnc strain exhibited significantly 
increased mRNA levels of the flagellar negative regulator 
gene ydiV, it demonstrated significantly decreased mRNA 
levels of 46 flagellar-associated genes (including flagellar 
structural, motor, and chemotaxis proteins) (Fig. 1D, E). 
Table 3 presents the 47 flagellar-associated genes that 
were found to be altered by RNase III expression. Overall, 
these results suggested that RNase III may contribute to 
the mRNA abundance of a subset of genes within the S. 
Typhimurium transcriptome.

RNase III Contributes to the Stabilization 
of Numerous mRNAs in the S. Typhimurium 
Transcriptome

GO is a classification system for molecular functions, bio-
logical processes, and cellular components. Figure 2 rep-
resents the results of the GO enrichment analysis of the 
DEGs, which was used to investigate the variances in cel-
lular components, biological processes, and molecular func-
tions between the ∆rnc and WT strains. The ∆rnc strain was 
enriched in terms associated with flagellar assembly-related 
cellular components, as well as large and small ribosomal 
subunits (Fig. 2A).

The biological process classification results of the GO 
analysis revealed enrichment of DEGs distributed across 
various categories, including flagellar assembly, cell motility 
(swimming and swarming), chemotaxis, organelle assembly, 
and peptide metabolic process (Fig. 2B), while the molecular 
function classification results revealed enrichment of DEGs 
involved in cytoskeletal motor activity, structural constitu-
ent of ribosome, rRNA binding, structural molecular activ-
ity, protein binding, RNA binding, and catalytic activity 
(Fig. 2C).

Collectively, these experimental data suggested that 
RNase III may contribute to stabilizing numerous mRNAs 
within the S. Typhimurium transcriptome while revealing a 
strong association between RNase III and flagellar assembly.

RNase III Levels Affect the Expression 
of Flagellar‑Associated Genes in S. Typhimurium

Comparative transcriptomic analysis revealed lower expres-
sion levels of flagellar assembly-associated genes in the 
∆rnc strain than in the WT strain (Figs. 1D, E, 2). Given 
the direct effect of the flagellum on bacterial pathogenic-
ity, affecting motility, biofilm formation, adherence, host 
cell invasion, and secretion of virulence factors (Haiko & 
Westerlund-Wikstrom, 2013), we hypothesized that RNase 
III is involved in regulating flagellar assembly.

To investigate the relationship between genes involved in 
flagellar assembly, we performed an analysis using STRING 
program, which determines the relationships between DEGs. 
The analysis revealed an association between the genes 
involved in flagellar assembly and chemotaxis (Fig. 3A).

To further validate the gene expression profiling, qRT-
PCR was conducted on 10 selected genes, comprising of 3 
upregulated and 7 downregulated genes (Fig. 3B). Consist-
ent with the results of the RNA-seq, the expression of flagel-
lar-associated genes (flhD, fliA, fliC, flgE, cheZ, tsr, and flgH) 
was downregulated in the ∆rnc strain, with a high coefficient 
of determination (R2 = 0.9223) (Fig. 3B, C), thereby validat-
ing the reliability of the RNA-seq data in identifying DEGs 
for subsequent analysis.

Fig. 1   Analysis of DEGs in the WT and ∆rnc strains. A Amino 
acid sequence alignment of E. coli RNase III (E. coli_rnc) and S. 
Typhimurium RNase III (Sal_rnc). Amino acid sequences of E. coli 
and S. Typhimurium RNase III were obtained from the National 
Center for Biotechnology Information database (AAA79829.1 and 
AAL21475.1, respectively). The sequences were aligned using 
ClustalW (https://​www.​genome.​jp/​tools-​bin/​clust​alw) and visual-
ized using GeneDoc software. Black backgrounds represent identi-
cal residues, while white or gray backgrounds indicate dissimilar 
residues. Numbers below the sequence alignment represent amino 
acid sequence similarity scores. B Growth rates of the WT, ∆rnc, 
and ∆rnccomp strains. S. Typhimurium cells were grown at 37 °C in 
LB medium supplemented with ampicillin (100 μg/ml). Growth was 
monitored by measuring the OD600 at the indicated time-points. The 
experiments were conducted in triplicate. C Western blot analysis of 
RNase III in S. Typhimurium strains (WT, ∆rnc, and ∆rnccomp). WT 
RNase III levels were set to 1, and GAPDH was used as an internal 
standard. Western blot data were analyzed using one-way analysis of 
variance with Student–Newman–Keuls test (p < 0.0001). Data repre-
sent mean ± s.e.m. of at least three independent experiments. Statisti-
cally significant differences have been indicated using distinct Greek 
letters. D Scatter plots of the DEGs. Genes in red and blue met the 
criteria of |log2FC|  > 0.5 and p-value < 0.05. Genes shown in black 
were identified as non-significant, because they did not meet the cri-
teria mentioned above. E Heatmap of flagellar-associated mRNAs 
showing significant differences in expression (p < 0.05) between the 
S. Typhimurium WT and ∆rnc strains. On the mRNA expression 
scale, red indicates higher mRNA expression, while blue indicates 
lower mRNA expression. DEGs, differentially expressed genes; FC, 
fold-change

◂

https://www.genome.jp/tools-bin/clustalw
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Table 3   Relative expression 
levels of flagellar-associated 
genes in the ∆rnc strain

Data represent genes with increased and decreased expression, exhibiting a fold change greater than 1.5 
and significant differences (∆rnc strain versus WT strain)

Genes Function Fold change 
(∆rnc/WT)

p value

ydiV Negative regulator of FlhDC expression 3.943 0.02261
flhD Master regulator for flagellar genes 0.618 0.03460
flgN Export chaperone specific for FlgK and FlgL 0.514 0.04029
flgM Anti-sigma factor 0.505 0.00981
fliR Type III export gate protein 0.484 0.00194
motB Stator, transmembrane proton channel 0.474 0.01698
tar Methyl-accepting chemotaxis protein 0.430 0.00533
fliT Export chaperone specific for FliD 0.392 0.00530
fliD Filament cap 0.379 0.00149
cheR Chemotaxis protein 0.371 0.00018
flgK Hook-filament junction 0.325 0.00579
cheW Chemotaxis protein 0.325 0.02211
fliS Export chaperone specific for FliC 0.321 0.00381
cheA Chemotaxis protein 0.315 0.00859
cheY Chemotaxis protein 0.312 0.00182
cheB Chemotaxis protein 0.306 0.00329
cheZ Chemotaxis protein 0.296 0.00010
fliC Filament (H1 flagellin) 0.278 0.04925
fliQ Type III export gate protein 0.271 0.00087
fliP Type III export gate protein 0.237 0.03577
tsr Methyl-accepting chemotaxis protein 0.229 0.01607
flhE Plug for a proton channel in a type III export apparatus 0.225 0.04906
fliA Sigma factor/Chaperone specific for FlgM 0.187 0.00132
fliZ Positive regulator for flagellar gene expression 0.186 0.00020
fliO Scaffolding protein for the assembly of the FliP5FliR1 complex 0.183 0.00033
flhB Type III export gate protein, protein export switch 0.171 0.00089
fliM C ring, directional switch 0.170 0.00375
fliL Stator associated protein 0.161 0.00059
flhA Type III export gate protein, energy transducer, protein export switch 0.152 0.01476
fliN C ring, directional switch 0.149 0.00734
flgJ Rod cap, Muramidase 0.143 0.00644
fliJ Type III export apparatus, central stalk 0.137 0.04078
fliK Hook-length control 0.135 0.02433
fliF MS ring 0.133 0.00347
fliH Type III export apparatus, peripheral stalk 0.129 0.01090
flgI P ring 0.128 0.00004
flgA Periplasmic chaperone for P ring assembly 0.124 0.01793
flgH L ring 0.121 0.00068
fliG C ring, torque generation, directional switch 0.121 0.02206
fliI Type III export apparatus, ATPase 0.118 0.00949
flgB Proximal rod 0.115 0.01029
flgC Proximal rod 0.109 0.00025
fliE Basal body protein connecting the MS ring and the proximal rod 0.096 0.01292
flgG Distal rod 0.095 0.01322
flgD Hook cap 0.094 0.02753
flgE Hook 0.089 0.04133
flgF Proximal rod 0.087 0.02529
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RNase III Levels Affect Motility, Biofilm Formation, 
and Flagellar Synthesis in S. Typhimurium

Two methods were used to assess motility to determine 
whether the downregulated flagellar-associated gene expres-
sion was linked to the phenotype. The ∆rnc cells showed 
lower swimming motility (measured on 0.3% LB agar 
plates) than the WT cells. However, when RNase III was 
exogenously expressed (∆rnccomp cells), swimming motility 
was restored (Fig. 4A). Swarming motility was measured on 
0.5% LB agar plates containing 0.5% glucose, and the results 
were consistent with those shown in Fig. 4B.

To further investigate whether motility loss affects bio-
film formation, we assessed the biofilm formation of the S. 
Typhimurium strains. The optimal biofilm formation tem-
perature of the S. Typhimurium strains used in this study was 
determined to be 20 °C in a previous study (Has et al., 2023). 
In this study, the capacity of the strains to form biofilms 
was determined at 24, 48, 72, 96, 120, 144, and 168 h. The 

optimum time for biofilm formation was 96 h (Fig. 4C). The 
degree of biofilm formation decreased by ~ 30% in the ∆rnc 
strain, as compared to that in the WT strain, and was again 
restored in the ∆rnccomp strain (Fig. 4C).

To determine the basis for the above phenotypes, 
we examined the flagellar synthesis of the S. Typhimu-
rium strains using negative staining electron microscopy 
(Fig. 4D). No or fewer flagellar were observed in the ∆rnc 
strain, as compared to those in the WT and ∆rnccomp strains. 
Additionally, the ∆rnc strain displayed ~ 95% reduced fla-
gellar length than the WT strain, while the ∆rnccomp strain 
displayed a length that was restored to the WT strain level 
(Fig. 4D). Furthermore, we observed a decrease in cell size 
in the ∆rnc strain (Fig. 4D). In Fig. 3B, the ∆rnc strain dis-
played ~ 1.6-fold increased mRNA expression of rng. This 
has been confirmed in previous studies as well, where the 
expression level of Rng (RNase G) protein was found to be 
higher in the E. coli and S. Typhimurium ∆rnc strains, as 
compared to the respective WT strains (Lee et al., 2021c; 
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Fig. 2   Classification analysis of DEGs in the WT and ∆rnc strains. 
GO A cellular component, B biological process, and C molecular 
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resents the gene ratio, where was calculated as the number of DEGs 

enriched in each term divided by the total number of all genes in each 
term. The y-axis represents significantly enriched GO terms based 
on the DEGs. The size of the circle is proportional to the number of 
genes. GO, Gene Ontology; DEGs, differentially expressed genes
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Song et al., 2014). In other studies, overexpression of the 
rng gene did not affect growth, but led to decreased cell 
size (minicells) or altered cell morphology (chained cells) 
(Okada et al., 1994; Song et al., 2014). These findings show 
that deletion of the rnc gene leads to overexpression of Rng, 
which results in decreased cell size.

Overall, these results suggest that RNase III levels impact 
flagellar synthesis, potentially influencing motility and bio-
film formation in S. Typhimurium.

RNase III Levels Influence S. Typhimurium 
Pathogenicity

In many pathogenic bacteria, flagellar-mediated motility is 
closely linked to processes, such as host cell invasion and 
virulence (Duan et al., 2013; Echazarreta & Klose, 2019; 
Josenhans & Suerbaum, 2002). Our experimental results 
showed that RNase III levels affected flagellar synthesis 
while influencing the motility and biofilm formation of S. 
Typhimurium (Fig. 4). Therefore, we analyzed the effects 
of RNase III levels on S. Typhimurium pathogenicity using 
various methods. The host invadability of S. Typhimu-
rium cells was first tested using a cell infection assay—an 
excellent system for studying S. Typhimurium virulence, 
because mutants with defective invasion and persistence in 
host cells exhibit significantly reduced virulence in animal 
hosts (Lee et al., 2021c, 2022; Pati et al., 2013; Raffatellu 
et al., 2005). HCT116 was infected with S. Typhimurium 
strains (WT, ∆rnc, and ∆rnccomp) for 1 h to facilitate inva-
sion and then subjected to gentamicin treatment to eliminate 
any remaining extracellular bacteria. The number of invad-
ing bacteria reduced by 59% in ∆rnc cells, as compared 
to that in the WT cells (Fig. 5A), but was restored to that 
of the WT cells when the ∆rnc cells were complemented 
with exogenous expression of rnc (∆rnccomp) (Fig. 5A). A 
cytotoxicity assay conducted to evaluate S. Typhimurium 
pathogenicity in vitro revealed that, at all time-points, the 

S. Typhimurium-mediated cytotoxicity at an multiplicity of 
infection of 100 was lower in the ∆rnc cells than in the WT 
cells, but restored to the WT levels in the ∆rnccomp cells 
(Fig. 5B).

These results suggest an association between RNase III 
levels and S. Typhimurium pathogenicity.

Discussion

The flagellum serves as an important motility organelle that 
facilitates bacteria movement. The construction of bacterial 
flagellar involves the synthesis of flagellar proteins, which 
is a highly energy-consuming process. In the early stages 
of Salmonella infection, flagellar-mediated motility facili-
tates the gastrointestinal colonization of sites preferred by 
Salmonella (Chaban et al., 2015; Horstmann et al., 2020; 
Wang et al., 2022). Although many studies have revealed the 
structure and assembly of the Salmonella flagellar complex, 
the regulation of flagellar synthesis in Salmonella under dif-
ferent conditions remains controversial.

Here, we demonstrate that RNase III levels influence sev-
eral pathogenesis-related processes of S. Typhimurium, as 
well as the expression of flagellar-related genes. Mutations 
in RNase III (∆rnc) resulted in the differential expression of 
approximately 700 genes (fold-change > 1.5 and p < 0.05), 
which represent ~ 20% of the S. Typhimurium genome. Fig-
ures 1 and 2 show that numerous transcripts are differentially 
expressed in the ∆rnc strain, as compared to those in the WT 
strain. With respect to the RNase III mutation, the DEGs in 
the RNA-seq data may partly result from the slow growth 
phenotype associated with the mutation (Fig. 1B) (Sim et al., 
2010). In addition, changes in transcript abundance may be 
associated with various mechanisms related to RNA half-
life, such as changes in translation rates and loss of RNase 
III-mediated cleavage events (Lee et al., 2019; Lim & Lee, 
2015; Lim et al., 2012; Sim et al., 2010, 2014).

A predominant phenotype of the ∆rnc strain was motil-
ity loss (Fig. 4), followed by markedly decreased flagellar-
associated gene expression (Figs. 1, 2). Nevertheless, in 
RNA-seq and qRT-PCR analyses, the ydiV gene, which 
acts as a negative regulator of FlhDC expression, showed 
increased expression levels in the ∆rnc strain (Figs. 1, 3 and 
Table 3). These findings indicate the importance of modu-
lation of ydiV gene expression by RNase III. In fact, YdiV 
binds to FlhDC to shut off the transcription of secondary 
and tertiary flagellar genes, thereby terminating flagellum 
biogenesis (Wang et al., 2022). Accordingly, the increase 
in ydiV mRNA abundance likely contributed to the reduced 
flagellar numbers and lengths, as well as the motility loss 
observed in the ∆rnc strain. As flagellar biogenesis affects 
bacterial virulence by inducing motility toward the host, pro-
moting host attachment and host cell invasion, and secreting 

Fig. 3   Analysis of the mRNA expression of DEGs in S. Typhimu-
rium. A Interactions of flagellar-associated proteins. The network 
of proteins encoded by flagellar-associated genes from among the 
DEGs was drawn using the STRING database (https://​string-​db.​
org). B Analysis of the mRNA expression of rng, pnp, and flagellar-
associated genes (ydiV, flhD, fliA, fliC, flgE, cheZ, tsr, and flgH) in 
S. Typhimurium strains (WT, ∆rnc, and ∆rnccomp), using qRT-PCR. 
The mRNA expression levels of the DEGs in the WT strain were 
set to 1. The data were analyzed using one-way analysis of variance 
with Student–Newman–Keuls test (p < 0.0001). The data represent 
mean ± s.e.m. of at least three independent experiments. Statisti-
cally significant differences have been indicated using distinct Greek 
letters. C qRT-PCR validation of the DEGs. The x-axis represents 
RNA-seq log2FC, while y-axis represents qRT-PCR log2FC. For (B) 
and (C), the mRNA expression levels of the DEGs were normalized 
to the expression of gdh mRNA. Gene expression was quantified 
using the 2−∆∆Ct method. DEGs, differentially expressed genes; FC, 
fold-change

◂
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Fig. 4   Effects of RNase III levels on motility, biofilm formation, and 
flagellar synthesis in S. Typhimurium. Analysis of A swimming and 
B swarming motilities in WT, ∆rnc, and ∆rnccomp S. Typhimurium 
strains. Swimming and swarming motilities of the cells were meas-
ured by plating them on 0.3% LB agar plates and 0.5% LB agar plates 
supplemented with 0.5% glucose, respectively. The experiments in 
(A) and (B) were conducted in five parallel runs, with three replicates 
each. C Biofilm formation in WT, ∆rnc, and ∆rnccomp S. Typhimu-
rium strains. Active cultures of S. Typhimurium strains were diluted 
to a final concentration of OD600 = 0.2 and seeded onto borosilicate 
tubes containing LB medium without NaCl (LB−NaCl) supplemented 
with ampicillin (100  μg/ml). The tubes were then incubated under 
static conditions at 20 °C, for 24, 48, 72, 96, 120, 144, and 168  h. 
The corresponding dyes were dissolved and measured using a spec-

trophotometer, at OD595. Data were analyzed using one-way analysis 
of variance, with the Student–Newman–Keuls test (p < 0.0001 for 
48, 72, 120, and 168 h; p < 0.001 for 24, 96, and 144 h). D Flagel-
lar synthesis in the WT, ∆rnc, and ∆rnccomp S. Typhimurium strains. 
The numbers and lengths of flagellar in the cells were measured using 
transmission electron microscopy images of negatively stained sam-
ples and ImageJ software (magnification: 2500×, WT and ∆rnccomp 
strains; 5000×, ∆rnc strain). For (A), (B), and (D), the data were ana-
lyzed using one-way analysis of variance, with the Student–Newman–
Keuls test (p < 0.0001). For (A), (B), (C), and (D), the data represent 
mean ± s.e.m. of at least three independent experiments. Statistically 
significant differences have been indicated using distinct Greek let-
ters. OD, optical density
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virulence factors (Haiko & Westerlund-Wikstrom, 2013), 
the ∆rnc strain phenotypes may be related to reduced host 
cell invadability and virulence, as compared to those of the 
WT and ∆rnccomp strain phenotypes (Fig. 5). In particular, S. 
Typhimurium with the RNase III mutation exhibited attenu-
ated virulence and proliferation in G. mellonella and mice 
(Viegas et al., 2013). However, how RNase III regulates 
ydiV gene expression remains unclear, and future studies 
should investigate the same via biochemical and biophysical 
experiments.

The cellular levels of RNase III in E. coli are regu-
lated posttranscriptionally through several mechanisms. 
These include endoribonucleolytic cleavage of the mRNA 
encoding the enzyme (Bardwell et al., 1989; Matsunaga 
et al., 1996), upregulation through bacteriophage kinase-
mediated phosphorylation (Lee et al., 2021a; Rahmsdorf 
et al., 1974), and protein inhibitor (YmdB)-aided down-
regulation (Kim et al., 2008; Lee et al., 2021a). Pathways 
for regulating RNase III activity in response to osmotic 
changes and exposure to aminoglycoside antibiotics have 
been uncovered (Lim et al., 2012; Sim et al., 2010, 2014; 
Song et al., 2014). These results indicate the importance of 
modulating RNase III expression and activity in bacterial 
physiology. In S. Typhimurium, mutations in ribonucle-
ases have been linked to alterations in pathogenicity and 
virulence. However, these alterations may stem from pleio-
tropic effects induced by these mutant ribonucleases, given 
that ribonuclease expression can affect the abundance of 
numerous mRNA species in E. coli (Sim et al., 2010). 
Homologues of RNase III are found in closely related 

pathogenic bacterial species, such as Salmonella, patho-
genic E. coli, Shigella dysenteriae, Enterobacter sp., and 
Klebsiella pneumoniae (Fig. S1). This indicates the pres-
ence of conserved functions of RNase III in these bacterial 
species. Future studies should investigate whether other 
pathogenic bacteria have different pathogenicity regula-
tory pathways through RNase III-associated regulation 
involving flagellar assembly modulation.

In this study, we provide experimental evidence affirm-
ing the role of RNase III as a positive regulator of flagellar 
assembly and motility, potentially impacting S. Typhimu-
rium pathogenicity. We also observed its positive effects 
on the abundance of mRNA species of flagellar-associ-
ated genes. Overall, this research highlights the impact 
of RNase III on pathogenicity-related processes in S. 
Typhimurium, underscoring the pivotal role of this well-
conserved RNase III homologue in pathogenic bacteria.
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Fig. 5   Effects of RNase III levels on S. Typhimurium pathogenic-
ity. A Effect of rnc expression on S. Typhimurium epithelial cell 
invasion. Human colorectal intestinal epithelial carcinoma cells 
(HCT116; 1 × 104 cells/well) were infected with S. Typhimurium 
strains (WT, ∆rnc, and ∆rnccomp) at an MOI of 100. The number of 
intracellular bacteria was then quantified as CFUs. Data were ana-
lyzed using one-way ANOVA with the Student–Newman–Keuls test 
(p < 0.0001). B Effect of rnc expression on S. Typhimurium cell via-
bility. HCT116 cells were infected with the S. Typhimurium cultures 

used in (A), at an MOI of 100. Cell viability was assessed by count-
ing viable cells using a trypan blue staining assay at the indicated 
time points. Data were analyzed using one-way ANOVA, with the 
Student–Newman–Keuls test (p < 0.0001 for 1  h, p < 0.001 for 2  h, 
p < 0.05 for 3 h, and p < 0.01 for 4 h). For (A) and (B), the data repre-
sent mean ± s.e.m. of at least three independent experiments. Statisti-
cally significant differences have been indicated using distinct Greek 
letters. MOI, multiplicity of infection; CFU, colony-forming units
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