

Received: April 12, 2025
Revised: July 3, 2025
Accepted: July 4, 2025
Published online: August 31, 2025

*Correspondence
Minkyung Ryu
rmk91@cau.ac.kr

Kangseok Lee
kangseok@cau.ac.kr

[†]These authors contributed equally to this work.

CRISPR-Cas technologies: Emerging tools from research to clinical application

Hana Hyeon^{1,†}, Soonhye Hwang^{1,†}, Yongyang Luo^{1,†}, Eunkyoung Shin², Ji-Hyun Yeom^{1,3}, Hong-Man Kim³, Minkyung Ryu^{1,3,*}, Kangseok Lee^{1,*}

¹Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea

²Department of Microbiology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea

³R & D Institute, NES Biotechnology, Seoul 06974, Republic of Korea

CRISPR-Cas technologies have emerged as powerful and versatile tools in gene therapy. In addition to the widely used SpCas9 system, alternative platforms including modified amino acid sequences, size-optimized variants, and other Cas enzymes from diverse bacterial species have been developed to apply this technology in various genetic contexts. In addition, base editors and prime editors for precise gene editing, the Cas13 system targeting RNA, and CRISPRa/i systems have enabled diverse and adaptable approaches for genome and RNA editing, as well as for regulating gene expression. Typically, CRISPR-Cas components are transported to the target in the form of DNA, RNA, or ribonucleoprotein complexes using various delivery methods, such as electroporation, adeno-associated viruses, and lipid nanoparticles. To amplify therapeutic efficiency, continued developments in targeted delivery technologies are required, with increased safety and stability of therapeutic biomolecules. CRISPR-based therapeutics hold an inexhaustible potential for the treatment of many diseases, including rare congenital diseases, by making permanent corrections at the genomic DNA level. In this review, we present various CRISPR-based tools, their delivery systems, and clinical progress in the CRISPR-Cas technology, highlighting its innovative prospects for gene therapy.

Keywords: CRISPR-Cas system, genetic engineering, clinical trial, delivery system, gene therapy

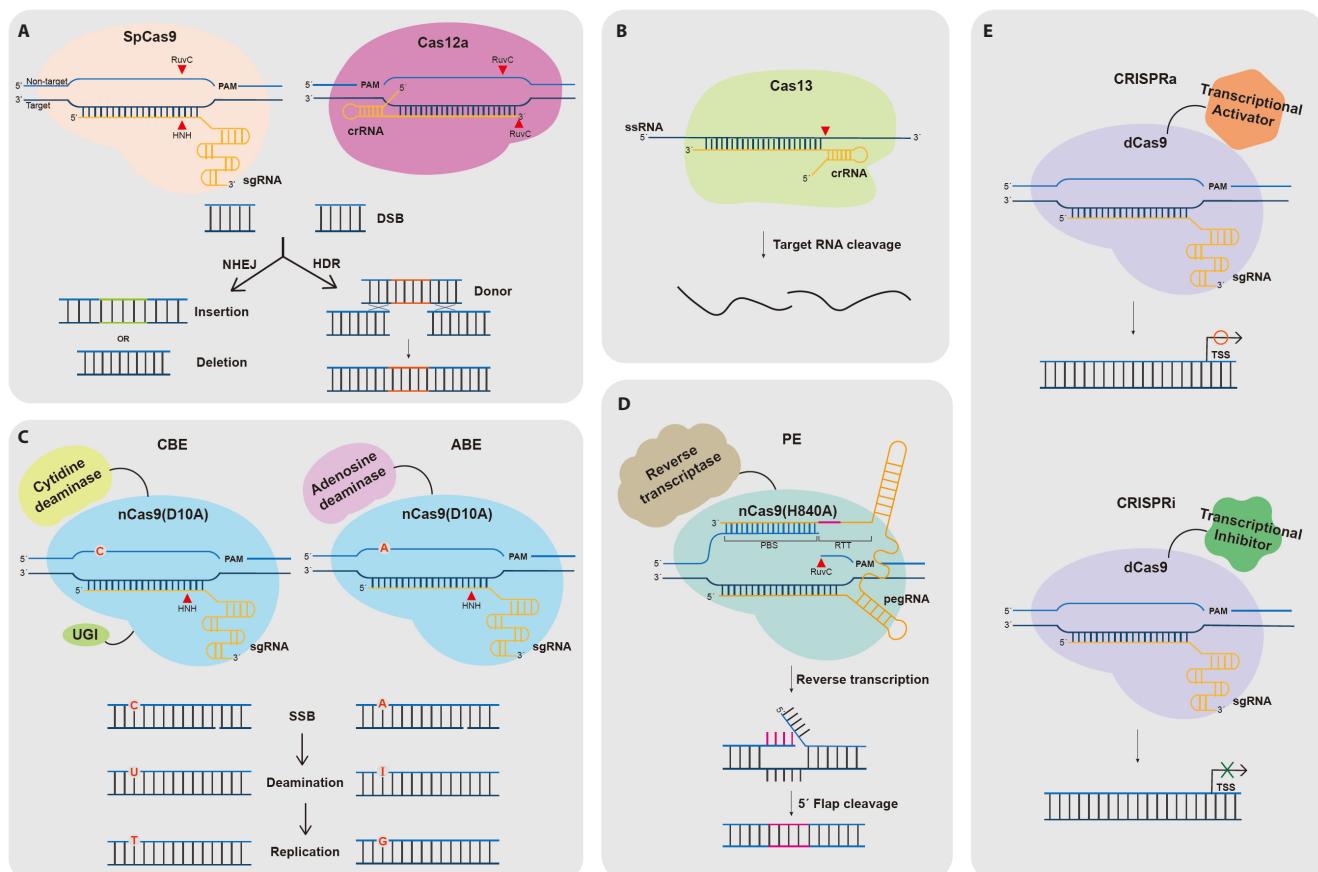
The CRISPR-Cas Technology

The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) in 1987 (Ishino et al., 1987) led to the identification of the CRISPR and CRISPR-associated protein (Cas) system as a defense mechanism in prokaryotes against phages (Barrangou et al., 2007; Garneau et al., 2010). In 2013, a pioneering study introduced the use of CRISPR-Cas9 for gene editing in prokaryotes (Jiang et al., 2013), and the same year, it was successfully used to edit the genome of eukaryotic cells (Cong et al., 2013).

CRISPR-Cas systems offer a range of features that support their therapeutic potential. The CRISPR-Cas system provides a simple and efficient gene editing process, enabling simultaneous targeting of multiple genes. In contrast to zinc-finger nucleases (ZFNs) (Kim et al., 1996) and transcription activator-like effector nucleases (TALENs) (Boch et al., 2009; Christian et al., 2010), CRISPR-Cas9 does not require a complex protein design for each target (Jinek et al., 2012; Ran et al., 2013). Moreover, this system is

capable of manipulating the genomic sequences of cells and organisms, by enabling precise, locus-specific genome editing, they allow permanent correction of disease-causing mutations, in contrast to conventional drugs that often require lifelong administration and offer only transient effects. Additionally, CRISPR-Cas platforms are highly versatile, adaptable for gene disruption, correction, or epigenetic modulation. Their modularity and relative ease of design also facilitate rapid development across both ex vivo and in vivo therapeutic contexts, as well as introducing precise epigenetic and transcriptional modifications (Nakamura et al., 2021; Nishida et al., 2016).

Cas Nuclease-Mediated Genome Editing


The CRISPR-Cas9 system is a highly effective genome editing tool that utilizes the endonuclease protein Cas9 and a guide RNA (gRNA) (Ran et al., 2013). The gRNA can be formed either as a duplex of CRISPR RNA (crRNA) and trans-activating CRISPR RNA (tracrRNA), or as a combined ver-

sion, the single-guide RNA (sgRNA). The spacer region of the crRNA or 5'-end of the sgRNA forms complementary base pairing with the target sequence and guides Cas9 to it (Jinek et al., 2012). The specificity of target recognition and cleavage is ensured by the presence of the protospacer adjacent motif (PAM) (Anders et al., 2014). Upon target recognition and binding, the nuclease domains of Cas9, HNH and RuvC (Gasiunas et al., 2012), induce a double-strand break (DSB) by cleaving the target and nontarget DNA strands, respectively (Nishimasu et al., 2014) (Fig. 1A).

The DSB can be repaired via two pathways: non-homologous end joining (NHEJ) or homology-directed repair (HDR) (Cecaldi et al., 2016; Sande and Joung, 2014). The NHEJ pathway often generates insertions or deletions (indels) that may cause frameshift mutations and premature stop codons, which can be used to reduce the expression of genes associated with various diseases (Frangoul et al., 2021; Gillmore et al., 2021). HDR is less frequent than NHEJ and requires the presence of donor DNA, but it can accurately introduce desired knock-in sequences at the target locus (Miyaoka et al., 2016; Yang et al., 2013a). Accordingly, clinical trials are currently investigating the application of HDR to correct disease-causing mutations through precise gene deletions or inversions (Kanter et al., 2021;

Mark Walters, 2024).

The most well-studied and widely used Cas nuclease in type II CRISPR systems is SpCas9, which originated from *Streptococcus pyogenes* (Jiang and Doudna, 2017; Mali et al., 2013). Although it can accurately recognize PAM sequences and process its target DNA, its utility is limited to targeting DNAs with 5'-NGG-3' PAM sequences (Jiang et al., 2013; Jinek et al., 2012). To address this inherent limitation, various Cas9 mutants that target altered PAM sequences by modifying the PAM-interacting (PI) domain have been developed. For instance, the PI domain of SpCas9 was modified to create variants that recognize the 5'-NGAN-3', 5'-NGNG-3', and 5'-NGCG-3' PAM (Kleinstiver et al., 2015). Furthermore, an extended PAM variant, xCas9 has been developed to recognize multiple PAM sequences (5'-NG-3', 5'-GAA-3', 5'-GAT-3', etc.) (Hu et al., 2018). Other SpCas9 variants have also been characterized; including a variant that recognizes a less restrictive 5'-NG-3' PAM sequence (Nishimasu et al., 2018), as well as variants for non-G PAMs, such as 5'-NRRH-3', 5'-NRCH-3', and 5'-NRTH-3' PAMs (Miller et al., 2020). Various Cas9 orthologs from diverse bacterial species that have different PAM specificities can also be used. These include Sa-Cas9 (5'-NNGRRT-3'; R = A or G) (Kleinstiver et al., 2015; Ran et al., 2015),

Fig. 1. Diversity of CRISPR-based tools. Schematic diagrams of CRISPR-based tools and their mechanisms of action. (A) SpCas9 and Cas12a (Cpf1) nucleases generate DSB at target DNA sites guided by gRNAs, leading to indels via NHEJ or HDR pathways. (B) Cas13 cleaves target RNA in a crRNA-guided manner. (C) The base editing system utilizes deaminase enzyme fused to nCas9 to induce precise base substitutions without introducing DSBs. (D) The prime editing system employs nCas9 fused to a reverse transcriptase, guided by a pegRNA which also serves as template for targeted DNA synthesis. (E) The CRISPR activation/interference system involves dCas9 fused to transcription activator or repressor to epigenetically modulate gene expression without altering DNA sequences.

StCas9 (5'-NNAGAAW-3', W = A or T) (Glemzaite et al., 2015; Muller et al., 2016), NmCas9 (5'-NNNNGMTT-3', M = A or C) (Hou et al., 2013; Lee et al., 2016), CjCas9 (5'-NNNNRYAC-3', Y = C or T) (Fonfara et al., 2014; Kim et al., 2017), and BlatCas9 (5'-NNNNCNA-3') (Gao et al., 2020; Karvelis et al., 2015).

Cpf1 (also known as Cas12a) has also been studied for its relative advantages, including high editing efficiency, small protein size, and dual functionality for both DNA and RNA cleavage. As a type V CRISPR, Cpf1 uses crRNA alone and induces staggered DNA DSBs with 4- or 5-nucleotide (nt)-long 5' overhangs through a single RuvC-like domain (Zetsche et al., 2015) (Fig. 1A). AsCpf1 and LbCpf1, which can efficiently cleave target DNA regions with a short adenine-thymine (AT)-rich PAM (5'-TTTV-3'; V = A, G, or C) (Dong et al., 2016; Stella et al., 2017; Zetsche et al., 2015), expand the range of available PAM sequences.

Besides DNA, CRISPR-Cas systems can modify RNA. The CRISPR-Cas13 system, part of the type VI CRISPR system, features a single RNA-guided Cas13 protein with higher eukaryotes and prokaryotes nucleotide-binding (HEPN) and ribonuclease domains. This enables it to bind to and specifically cleave target single-stranded RNA through its ribonuclease activity (Abudayyeh et al., 2017) (Fig. 1B). The Cas13 family is classified into different subtypes based on the structural characteristics of their crRNA and the protein components, such as Cas13a (also known as C2c2), Cas13b, Cas13c, Cas13d, Cas13X, and Cas13Y (Liu and Pei, 2022). Cas13-based RNA editing systems have been effectively used for virus detection, splicing regulation, transcript labeling, and RNA knockdown (Cox et al., 2017; Freije et al., 2019; Konermann et al., 2018; Yang et al., 2019). Cas13-mediated RNA therapy offers a key advantage as it avoids irreversible genome mutations, that leads to RNA editing to gain popularity for treating diseases characterized by temporal changes in cellular states (Abudayyeh et al., 2019), particularly in the treatment of rare diseases (Cox et al., 2017; Tang et al., 2021).

For practical applications, the use of these nucleases in repairing intractable pathogenic mutations has been explored (Miller et al., 2020; Nishimatsu et al., 2018). However, Cas variants exhibit notable limitations, including reduced efficiency and cleavage activity (Hu et al., 2018; Nishimatsu et al., 2018), highlighting the need for further improvements to expand the application of Cas endonucleases in disease-relevant genome editing.

In addition to therapeutic applications, CRISPR-Cas systems are becoming a valuable tool for molecular diagnostics because of their programmability and high specificity. Certain Cas proteins (e.g., Cas12a, Cas13a) are used for signal amplification in diagnostic platforms that exploit target-dependent collateral cleavage activity; other Cas variants are catalytically inactive (e.g., dCas9), and they can be used to sequence-specific binding for sensor-based detection. These mechanistic features have led to the development of a range of diagnostic technologies (Kulkarni et al., 2023).

Early platforms such as Cas13a-based SHERLOCK (Kellner et al., 2019) and Cas12a-based DETECTR (Chen et al., 2018) demonstrated high sensitivity in detecting viral and bacterial pathogens. Subsequent innovations include FLASH-NGS (Quan et al., 2019), which utilizes Cas9 for targeted enrichment in sequencing applications; CASLFA (Wang et al., 2020a), combining Cas9 with lateral flow assays for rapid field diagnostics; CRISPR-Chip (Hajian et al., 2019), integrating dCas9 with graphene-based sensors for amplification-free detection; FELUDA (Azhar et al., 2021), employing Fn-Cas9 for single nucleotide variant identification; VaNGuard (Ooi et al.,

2021), designed for variant discrimination in SARS-CoV-2 detection; and CONAN (Shi et al., 2021), a Cas12a-based autocatalytic system achieving attomolar sensitivity without preamplification. These advancements highlight the versatility of CRISPR-Cas technologies in diagnostic applications.

Base Editing

Besides leveraging the original function of the CRISPR-Cas9 system, its ability to localize proteins to specific target DNA sites via guide RNA has also been utilized. Variants, such as Cas9 nuclease (nCas9) and catalytically inactive “dead” Cas9 (dCas9) (Qi et al., 2013), which were created by introducing mutations in one or both of the two catalytic domains of Cas9, have been used in conjunction with other enzymes to direct and mediate their function at the target site.

Base editors (BEs) are fusion proteins composed of nCas9 or dCas9 with a deaminase that promotes site-directed mutagenesis by single-base conversions at specific genomic locations targeted by sgRNA without generating DSBs (Gaudelli et al., 2017; Komor et al., 2016) (Fig. 1C).

Cytosine base editors (CBEs), such as APOBEC, consist of a fusion of either nCas9 (D10A) or dCas9 (D10A and H840A) and cytidine deaminase. An editor directed to a specific genomic locus by sgRNA can convert cytidine to uridine within a limited editing window adjacent to the PAM site. Subsequently, uridine is converted to thymidine via the base excision repair (BER) mechanism, resulting in a C-to-T transition (or a G-to-A transition on the complementary strand) (Komor et al., 2016). Adenine base editors (ABEs) utilize adenosine deaminase, a product of direct evolution of an *Escherichia coli* tRNA adenosine deaminase known as TadA. They are designed to convert adenosine to inosine, which is recognized as guanosine by DNA polymerase in the cell, resulting in an A-to-G (or a T-to-C) substitution (Gaudelli et al., 2017).

Additionally, two representative RNA BE systems were developed by fusing catalytically inactive Cas13 (dCas13) with the adenosine or cytidine deaminase domain. The RNA Editing for Programmable A-to-I Replacement (REPAIR) system induces adenosine-to-inosine deamination through the fusion of ADAR2 adenosine deaminase (Cox et al., 2017). Similarly, the RNA Editing for Specific C-to-U Exchange (RESCUE) system enables cytosine-to-uracil deamination by incorporating a directionally evolved ADAR2 cytidine deaminase (Abudayyeh et al., 2019).

Further advances have been made to improve the applicability of BEs. For instance, the P1 domain mutants of nCas9 have been utilized to expand the target site, the linker region between the Cas variant and deaminase has been modified to adjust the editing window, and additional fusion proteins have been incorporated to increase the integrity of base conversion. Uracil DNA glycosylase inhibitor (UGI) was used to prevent the transformation of U into an apurinic/apyrimidinic site (Banno et al., 2018). In another study, bacteriophage Mu-derived Gam proteins were fused to Cas proteins to minimize the formation of unwanted indels that may be caused by DSBs during BER, utilizing the ability of Gam to bind to free DSB ends (Komor et al., 2017). In addition, new BEs with fewer PAM sequence constraints (Walton et al., 2020), C-to-G conversion capabilities (glycosylase base editors, GBEs) (Kurt et al., 2021; Zhao et al., 2021), and diverse editing windows (Koblan et al., 2018; Richter et al., 2020) have been developed.

As a therapeutic strategy, BEs have been applied to correct point mutations, such as pathogenic premature stop codons (Ryu et al., 2018), and to

induce exon skipping by disrupting splice acceptors (CRISPR-SKIP) (Gapinski et al., 2018). By enabling precise editing to silence pathogenic mutant alleles or restore protein function, BEs hold a significant potential for managing a broad range of genetic disorders (Kuscu et al., 2017; Rossidis et al., 2018; Ryu et al., 2018). For instance, sickle cell anemia is caused by an A-to-T substitution in the β -globin gene (Kato et al., 2018). Other examples include cystic fibrosis (Amistadi et al., 2023) and phenylketonuria (Brooks et al., 2024). Although BEs are designed to avoid double-stranded DNA breaks, they can still lead to unintended indels and mutations. Previous research has shown that CBEs induce significant off-target single-nucleotide variants (SNVs) in both plant and animal models (Jin et al., 2019; Zuo et al., 2019). Additionally, there are limitations to this technology, such as in the correction of multi-nucleotide changes or small and large deletions. To overcome these limitations, new types of genome-editing tools, such as prime editors, have been developed (Anzalone et al., 2019).

Prime Editing

The prime editor (PE) system is composed of an nCas9 (H840A)-reverse transcriptase (RT) fusion protein and a prime editing gRNA (pegRNA). PE does not require donor DNA templates or DSBs to generate insertions (up to 44 bp), deletions, or point mutations, such as transitions and transversions. Instead, the pegRNA contains a spacer sequence at its 5'-end and an extended 3'-end sequence that serves as both a primer binding site (PBS) and a reverse transcription template (RTT). The pegRNA guides nCas9 to its target DNA where it introduces a single-stranded break exposing a 3' DNA end. The PBS in the pegRNA anneals to this region to allow the RT to begin DNA synthesis using the RTT, which results in a 3' DNA flap with the intended edit. The newly synthesized flap is resolved by cellular repair mechanisms and integrated into the genome resulting in stable genome modification (Anzalone et al., 2019). Large genomic deletions or insertions of up to 110 bp can be generated using a pair of partially complementary pegRNAs (paired-peg, TWIN-PE) (Anzalone et al., 2022) (Fig. 1D).

The PE concept holds promise for precise and potentially limitless genome editing, which can greatly expand its applications in biological and medical research. However, it faces key shortcomings that require further optimization. First, the editing efficiency of PEs is lower than that of BEs, which may limit their therapeutic utility. Furthermore, the large size of the fusion protein makes it difficult to load onto delivery materials. Thus, the development of strategies for more efficient delivery is required. Therefore, these shortcomings must be overcome to realize the full therapeutic potential of PEs. If prime editing continues to improve, theoretically approximately 89% of known disease-causing gene mutations can be corrected (Anzalone et al., 2019).

Table 1. Delivery systems for CRISPR/Cas cargos

	Electroporation	AAV	LNP	AuNP
CRISPR/Cas Format	DNA, mRNA, RNP	DNA	DNA, mRNA, RNP	RNP
Advantage	High efficiency, versatility	High efficiency, specific tissue targeting	High efficiency, versatility	High efficiency, non-toxic, specific tissue targeting
Disadvantage	Cell toxicity, limited applicability	Capacity limitations, high production costs, time-consuming production	Limited tissue specificity long-term safety concerns, dose-dependent toxicity	Lower efficiency, complex manufacturing

CRISPRa/i for Transcriptional Regulation

In addition to modifying bases and deleting or integrating DNA sequences, the CRISPR-Cas9 system can be used to manipulate gene expression by combining transcription factors (TFs) and can function as transcriptional repressors (CRISPR interference; CRISPRi) or activators (CRISPR activation; CRISPRa) (Gilbert et al., 2014) (Fig. 1E). The CRISPRi system utilizes repressor domains, such as the Krüppel-associated box (KRAB) (Margolin et al., 1994) to create steric hindrance that blocks the binding of TFs to the promoter region, resulting in decreased gene expression (Gilbert et al., 2013). Conversely, the CRISPRa system integrates activator domains, such as VP64, Rta, HSF1, and p65, to recruit RNA polymerase or other TFs, thereby enhancing the expression of downstream genes (Chavez et al., 2015; Nihongaki et al., 2019). These systems are promising for therapeutic use because they can function without permanent genomic modifications. Although these tools have fewer clinical applications, recent *in vivo* studies have shown that CRISPRa and CRISPRi approaches are therapeutically feasible for a variety of disease models (e.g., CRISPRi to repress the *Nrl* gene in retinitis pigmentosa model mice to prevent secondary cone loss [Moreno et al., 2018], downregulating *Pcsk9* expression in the mouse liver to reduce cholesterol serum level [Thakore et al., 2018], silencing *Fabp4* in white adipose tissue of obesity-induced diabetic mouse model for metabolic homeostasis [Chung et al., 2019], suppressing oncogenic $\Delta Np63$ in xenograft mouse model to inhibit tumor growth [Yoshida et al., 2018]), and CRISPRa to activate *Fgf21* expression in hepatic tissue to improve metabolic regulation in adult mice [Zhang et al., 2021]). Therefore, sustained expression of the CRISPRa/i system is required to ensure stable transcriptional regulation during therapeutic interventions.

CRISPR-Cas Delivery Formats and Tools

The CRISPR-Cas system offers a precise and direct approach to treating genetic disorders, making it an ideal candidate for therapeutic applications. For the safe and effective clinical implementation of CRISPR-Cas, the development of suitable format of cargo and delivery systems for both *in vivo* and *ex vivo* applications is imperative (Table 1).

CRISPR-Cas Cargo Formats

The CRISPR-Cas9 system is available in various formats, including 1) a plasmid encoding both Cas9 and sgRNA (Sakuma et al., 2014); 2) two separate plasmids, which encode Cas9 and sgRNA, respectively (Senís et al., 2014); 3) Cas9 mRNA together with the sgRNA molecule (Miller et al., 2017); and 4) ribonucleoprotein (RNP) complexes comprising the Cas9 endonuclease protein and the sgRNA molecule (Schumann et al., 2015). Each format offers different advantages and limitations depending on the

specific application and delivery method (Salvagnin et al., 2023; Yin et al., 2016).

Delivering the CRISPR-Cas system in the plasmid DNA form allows for sustained expression of Cas and gRNA, which can be advantageous in cases requiring continuous gene editing. Plasmids are attractive options for laboratory and therapeutic applications because of their high stability, cost-effectiveness, and scalability for large-scale manufacturing (Slattery et al., 2018; Zhang et al., 2020). However, plasmid delivery also has several disadvantages. Owing to its complex structure and additional genetic elements, such as promoters and antibiotic resistance genes, plasmid DNA is generally larger than mRNA and RNP formats (Lin et al., 2022). Additionally, because the Cas9 protein requires to be transcribed in the nucleus, the plasmid must cross both the plasma and nuclear membranes for successful delivery, posing significant challenges, especially in eukaryotic cells (Glass et al., 2018; Vaughan and Dean, 2006). Furthermore, random integration of the plasmid into the host genome may induce sustained expression of the Cas9 protein, which can lead to off-target gene editing and potentially trigger an immune response to foreign DNA (Cho et al., 2014; Pattanayak et al., 2013).

Another option, the mRNA format, is translated directly in the cytoplasm, which eliminates the need for nuclear entry and transcription and allows for a faster onset of gene editing. Owing to the unstable nature of RNA, transient expression of the Cas9 protein also reduces off-target effects and the risk of genome integration (Leonhardt et al., 2014). However, producing Cas9 and gRNA in an mRNA format is generally more expensive and difficult because of the large size of the expression cassettes. Additionally, mRNA exhibits lower stability than DNA in biological fluids and is highly sensitive to temperature fluctuations, necessitating the use of low-temperature storage systems (Uddin and Roni, 2021; Zhang et al., 2020). Finally, the RNP format, which includes the Cas9 protein and gRNA complex, does not require transcription or translation. This format provides for the fastest-acting approach, yielding high editing efficiencies, and minimizing the risk of off-target side effects owing to its short duration of activity (Kouranova et al., 2016). However, because of the complex composition and charge properties of RNPs, lipid nanoparticle (LNP) and adeno-associated virus (AAV) systems, which have been extensively studied and are commonly used for DNA or RNA delivery, are not readily applicable for RNP delivery (Chen et al., 2019; Wei et al., 2020).

CRISPR-Cas Delivery Systems

Currently, CRISPR-Cas components are delivered via three main delivery platforms: physical methods, viral vectors, and nonviral vectors. Physical methods, such as electroporation and microinjection, facilitate the direct delivery of therapeutic molecules into cells by inducing the formation of temporary nanopores on membranes or by directly introducing the materials (Tsong, 1991). Electroporation can achieve high delivery efficiency with a variety of CRISPR-Cas formats, including DNA, mRNA, and RNPs, owing to its mode of action (Kang et al., 2015; Ren et al., 2017; Schumann et al., 2015). This method bypasses the need for a carrier and imposes few restrictions on the cargo size, typically found with viral vectors (Atkinson and Chalmers, 2010), and unlike nonviral vectors, it is not constrained by endocytosis as a rate-limiting step (Fajrial et al., 2020). In vivo delivery of plasmid-based CRISPR-Cas9 components via electroporation has been successfully applied in preclinical models. For example,

CRISPR-Cas9 plasmids targeting *Dmd* were delivered into the skeletal muscle of *mdx* mice, resulting in restored dystrophin expression and improved muscle function (Xu et al., 2016). In another study, co-delivery of Cas9 RNP and donor DNA into retinal pigment epithelial cells rescued photoreceptor degeneration in a model of retinitis pigmentosa (Cai et al., 2019). However, electroporation is generally limited to ex vivo administration because of the challenges involved, such as the possible impairment of cell viability by strong electric fields (Bak et al., 2017; Canatella et al., 2001). The use of 100-volt pulses during electroporation for drug delivery to the skin causes a painful sensation and can lead to injury (Prausnitz, 1999; Weaver et al., 1997). Therefore, the delivery conditions using electroporation must be carefully adjusted based on the cell type and other experimental parameters to achieve optimal performance.

Viral vectors, including lentivirus vectors (LVs), adenovirus vectors (AdVs), and adeno-associated virus vectors (AAVs), use the viral machinery to deliver therapeutic agents (Dong and Kantor, 2021; Tsukamoto et al., 2018; Verdera et al., 2020). Despite the clinical advantages of viral vector-based gene therapy, all suffer from specific limitations that limit more widespread application. Lentiviral vectors have the advantage of stably integrating transgenes, but they also run the risk of insertional mutagenesis (Ranzani et al., 2013) and are difficult to produce on a large scale (Valkama et al., 2020). Adenoviral vectors allow high payloads of genes to be delivered, but they elicit strong innate and adaptive immune responses (Lowenstein et al., 2007; Zhu et al., 2007) that limit their repeat use and safety, due primarily to concerns about vector recombination (Walsh et al., 2009).

Currently, AAVs are the preferred vectors for in vivo gene delivery with some advantages over other viral vectors, including limited integration into the host genome and relatively low immunogenicity (VandenDriessche et al., 2007). Various AAV serotypes exhibit specific tissue tropism, notably for lung epithelial cells, cardiac cells, neurons, and skeletal muscle cells, enabling targeted gene delivery to specific tissues (Aschauer et al., 2013; Bish et al., 2008; Blankinship et al., 2004; Halbert et al., 2001).

AAVs are highly prevalent in humans, with approximately 80% of the population exhibiting seropositivity for at least one AAV serotype. Despite their extensive distribution, no human disease has been linked to AAV infections (Chhabra et al., 2024; Flotte et al., 2022; Lek et al., 2023b). Owing to their favorable safety profile, AAVs have become a leading viral delivery system for in vivo delivery of CRISPR-Cas components (Kim et al., 2017; Wang et al., 2020b).

Nonetheless, AAVs have critical limitations such as pre-existing neutralizing antibodies (Mendell et al., 2022) and difficulty with high-titer production. Particularly, AAVs have a critical limitation in terms of their DNA packaging capacity, which is approximately 4.7–5 kb (Dong et al., 1996). This limitation poses a challenge for the use of larger CRISPR-Cas systems. The SpCas9 protein alone is encoded by DNA that is more than 4.1 kb in size, and when combined with sgRNA sequences and regulatory elements, the total payload frequently exceeds the capacity of a single AAV vector (Senís et al., 2014). Consequently, CRISPR-based gene editing using AAV vectors often requires multiple vectors, making the transfection process more complex, time-consuming, and costly. Strategies to overcome this limitation include the use of smaller Cas9 orthologs or Cas12f1 (Kim et al., 2022; Ran et al., 2015). Another approach involves the use of dual AAV systems that independently express Cas proteins and gRNAs using two distinct vectors (Yang et al., 2016). Additionally, split intein reconstitut-

tion is employed to deliver larger components, such as BEs and PEs, by assembling full-length proteins from split fragments after expression (Levy et al., 2020; She et al., 2023; Truong et al., 2015).

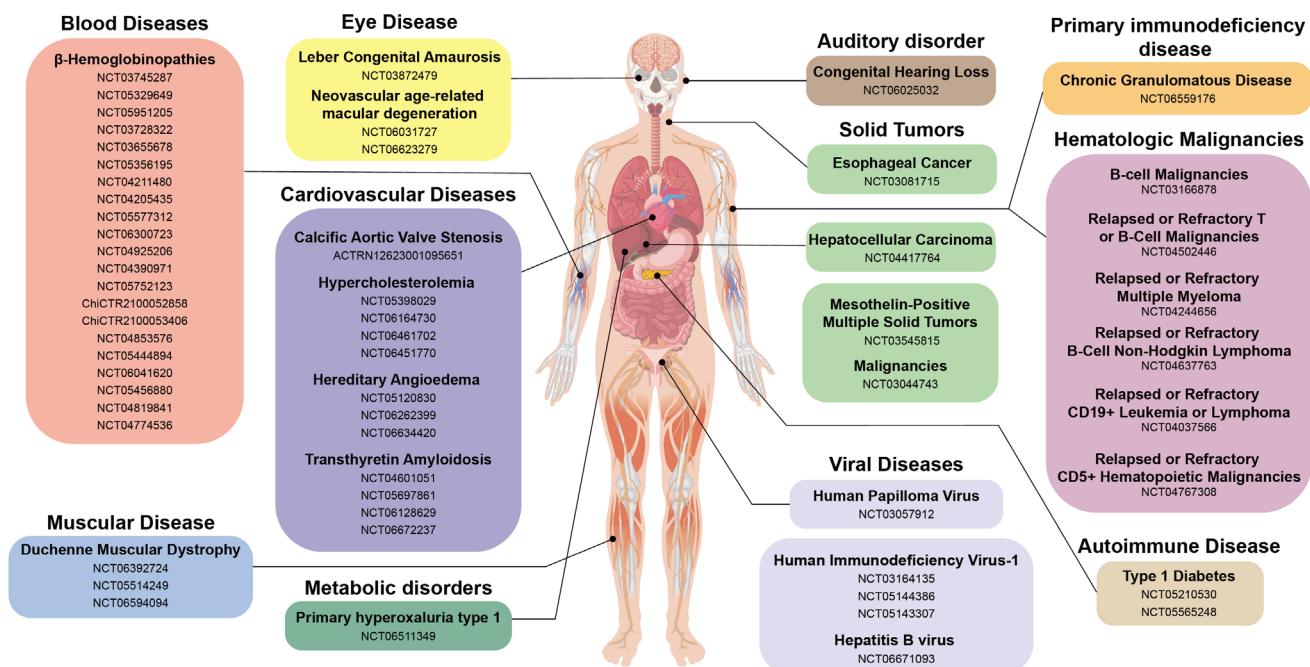
Nonviral vectors, such as LNPs, offer a safer alternative with lower immunogenicity, although their delivery efficiency is often lower than that of viral methods (Chen et al., 2017; Pérez-Martínez et al., 2011; Uchida et al., 2002), and also, unlike electroporation, LNPs are FDA-approved drug delivery systems that do not impose significant stress on cells (Adams et al., 2018). LNPs, including liposomes, are widely used as carriers for delivering various molecules, particularly nucleic acids, into cells (Hou et al., 2021; Kulkarni et al., 2019). The strong anionic charge of nucleic acids and their inherent instability outside cells make their passage across the negatively charged cell membrane extremely difficult. Thus, encapsulation in cationic liposomes enables efficient delivery by facilitating membrane fusion and intracellular release (Gao and Huang, 1996).

The delivery of CRISPR-Cas9 systems using LNPs can occur in the form of DNA (Zhang et al., 2017), mRNA (Yin et al., 2016), or RNPs (Zuris et al., 2015). For gene editing, CRISPR-Cas9 systems have been successfully delivered both in vitro and in vivo using the commonly employed Lipofectamine transfection (Schuh et al., 2018; Schwank et al., 2013; Yu et al., 2016). Lipid-based reagents for CRISPR-Cas9 delivery have been utilized in clinical trials for the treatment of various diseases, such as transthyretin amyloidosis, hereditary angioedema, and calcific aortic valve stenosis (Adams et al., 2018; Gillmore et al., 2021; Longhurst et al., 2024; Morrow et al., 2023).

Although LNPs have several advantages, they are typically sequestered within endosomes. To prevent lysosomal degradation of the cargo, LNPs must efficiently escape endosomes after crossing the cell membrane (Gilveron et al., 2013). Even though Cas9 complexes successfully escape the endosome, efficient nuclear transport remains a significant challenge, frequently leading to suboptimal delivery efficiency (Shen et al., 2013). Furthermore, LNP-based delivery is associated with dose-dependent toxicity and potential immunogenicity, which pose challenges to its therapeutic applicability (Kedmi et al., 2010; Swaminathan et al., 2016). As for targeted delivery, LNPs primarily accumulate in the liver, where lipid uptake and metabolism are mediated by the low-density lipoprotein receptor (LDLR). Therefore, modulation of the surface charge by recombining the components of LNPs is being focused upon to improve delivery to specific organs that require gene editing (Cheng et al., 2020; Wei et al., 2020).

The currently used delivery systems are limited in their inability to customize the delivery formats, duration of expression, and expression levels of CRISPR-Cas. To overcome these challenges, novel delivery platforms, such as AuNPs, are being explored. AuNPs are characterized by low toxicity, nonimmunogenicity, biocompatibility, and highly tunable surface chemistry (Carnovale et al., 2016; Shukla et al., 2005). Their favorable chemical properties facilitate simple conjugation methods, particularly via interactions with materials containing thiol groups (Cutler et al., 2012; Liu and Liu, 2017; Storhoff et al., 1998). This allows for the delivery of DNA, RNA, and proteins via a single platform through the utilization of pre-existing thiol groups or thiolation of the terminal or externally exposed regions of each molecule. Several studies have demonstrated successful in vitro and in vivo delivery of RNA (Yeom et al., 2013), single- or double-stranded oligonucleotides (Jensen et al., 2013; Kim et al., 2010, 2011; Ryou et al., 2010), peptides (Lee et al., 2017b; Yeom et al., 2016), proteins (Ryou et al., 2014), and antibodies (Yeom et al., 2023) using AuNPs. AuNPs

are particularly advantageous for localized genome editing because they allow targeted delivery by simultaneously carrying both active substances and targeting molecules. Furthermore, AuNPs are safe for clinical use and have been approved by the FDA for clinical research (Kumthekar et al., 2021). Given their safety and versatility, AuNPs have also been explored as delivery vehicles for CRISPR-Cas in the RNP format. Successful gene editing has been demonstrated in both in vivo and in vitro models using this platform (Lee et al., 2017a, 2018; Shahbazi et al., 2019), which highlights the potential of AuNPs as future therapeutic platforms, subject to further research and development.


CRISPR-Based Genetic Therapies in Clinical Trials

CRISPR-based gene editing has completely changed the scenario in the field of medical research, enabling the rapid development of cellular and animal models for preclinical and clinical development of novel treatment strategies. By directly altering the genome, CRISPR-Cas can offer long-term benefits to patients in contrast to traditional drug treatments that provide temporary relief. Furthermore, by easily changing the sgRNA sequence and adjusting the Cas9 variants, the system can be quickly implemented to provide a practical and effective therapeutic option for a variety of diseases. As described previously, the CRISPR-Cas system is a promising platform for gene editing. To highlight its usefulness, development of therapeutic approaches using the CRISPR-Cas system and related clinical trials of this technology are described in this section (Fig. 2 and Table 2).

Blood Disease

β -Hemoglobinopathies, which affect the β -chain of hemoglobin, impair the efficiency of oxygen transport by hemoglobin. These disorders are among the most prevalent monogenic diseases worldwide, with sickle cell disease (SCD) and β -thalassemia being the predominant forms (Piel et al., 2013). SCD results from a 20A > T mutation in the β -globin gene (*HBB*), leading to the production of hemoglobin S (HbS, β^{Glu6Val}) (Kato et al., 2018). The sickle-shaped red blood cells caused by the mutation induce hemolytic anemia and vaso-occlusive events, resulting in ischemic damage to tissues and contributing to acute pain crises and organ failure (Piel et al., 2017). In contrast, β -thalassemia is resulting from a variety of mutations, including deletions that reduce the synthesis of functional β -globin protein. This imbalance between β - and α -globin chains leads to the precipitation of α -globin within red blood cells, causing hemolysis and impaired erythropoiesis (Taher et al., 2021).

Many gene editing approaches for β -hemoglobinopathies focus on increase fetal hemoglobin (HbF, $\alpha 2\gamma 2$) levels by damaging B-cell lymphoma/leukemia 11A gene (*BCL11A*), which suppresses γ -globin expression, and the promoter regions of the γ -globin genes (*HBG1/2*), ex vivo in HSPCs, to substitute γ -globin for β -globin (Forget, 1998; Li et al., 2018). In 2018, clinical trials were initiated to treat severe SCD (NCT03745287; NCT05329649; NCT05951205) (Vertex Pharmaceuticals, 2018b, 2022a, 2024) and transfusion-dependent β -thalassemia (TDT) (NCT03728322; NCT03655678; NCT05356195) (Allife Medical Science and Technology, 2019; Vertex Pharmaceuticals, 2018a, 2022b), by targeting the DNase I hypersensitivity sites (DHS) in erythroid-specific enhancer of *BCL11A* in autologous CD34⁺ cells ex vivo (Canver et al., 2015; Wu et al., 2019). Those

Fig. 2. Clinical trials of CRISPR-based genetic therapies. Schematic illustration of human anatomical structures and associated diseases investigated in clinical studies using CRISPR-based tools. NCT numbers are classified for different diseases, including cardiovascular diseases, eye diseases, blood diseases, metabolic disorder, muscular disease, auditory disorder, solid tumors, viral diseases, primary immunodeficiency disease, autoimmune disease, and hematologic malignancies, according to the affected organs.

led to the U.S. Food and Drug Administration (FDA) approval in 2023 of Exagamglogene autotemcel (Exa-cel; marketed as CASGEVY), the first CRISPR-Cas9-based ex vivo gene editing therapy. Preliminary findings demonstrated a high rate of successful incorporation of genetically modified HSPCs, with 80% of the alleles exhibiting modification of *BCL11A*, 1 year after the treatment. This led to a marked increase in HbF production, accompanied by a significant reduction in the need for blood transfusions as well as in the incidence of vaso-occlusive events in patients with SCD (Frangoul et al., 2021). To disrupt the +58 DHS of *BCL11A*, two similar approaches are currently under clinical evaluation for the treatment of TDT, developed by Bioray (BRL-101) (NCT04211480, NCT04205435, NCT05577312, and NCT06300723) (Bioray Laboratories, 2020, 2021, 2022, 2024) and EdiGene (ET-01) (NCT04925206, NCT04390971, and NCT05752123) (EdiGene, 2021, 2023; Institute of Hematology & Blood Diseases Hospital, 2023b) (Fang et al., 2019; Zheng et al., 2023). During an 18-month follow-up study of BRL-101, two patients demonstrated successful engraftment of modified HSPCs, resulting in an editing incidence of 85% in the bone marrow and a significant increase in HbF levels (Fu et al., 2022). These outcomes were also observed in 10 patients diagnosed with TDT (Zheng et al., 2023). Similarly, the initial findings from ET-01 exhibited encouraging results (Shi et al., 2022).

In parallel with this, HSPCs edited using the CRISPR-Cas9 to disrupt *BCL11A* binding site at *HBG1/2* (ChiCTR2100052858; ChiCTR2100053406) (The First Affiliated Hospital of Guangxi Medical University, 2021; The 923rd Hospital of the People's Liberation Army, 2021) showed increased HbF levels in individuals with TDT (Liu et al., 2023, 2024; Wang et al., 2022). Additionally, EDIT-301 employs an AsCas12a-based genome editing approach in HSPCs to effectively disrupt the repressor-binding sites of the

HBG1/2 promoter via electroporation (De Dreuzy et al., 2019; Hanna et al., 2023). This results in a 40% increase in HbF, and are currently undergoing clinical assessment for SCD (NCT04853576) (Editas Medicine, 2021) and TDT (NCT05444894, NCT06041620) (Editas Medicine, 2022; Institute of Hematology & Blood Diseases Hospital, 2023a). Beam Therapeutics developed BEAM-101, which introduces an ABE system to HSPCs by electroporation, to induce a point mutation in the regulatory element of *HBG1/2* promoters and reactivating γ -globin expression (NCT05456880) (Beam Therapeutics, 2022; Chockalingam et al., 2024; Gupta et al., 2024).

Alternative approach for treating SCD involves direct correction of *HBB* mutations. Clinical trials have attempted to induce HDR by delivering Cas9 RNP into HSPCs via electroporation, with donor DNA introduced through rAAV6 transduction (Dever et al., 2016; Lattanzi et al., 2021) (NCT04819841) (Kamau Therapeutics, 2021; Kanter et al., 2021) or electroporation (DeWitt et al., 2016) (NCT04774536) (Mark Walters, 2024). Although still in the preclinical stage, BEs hold a promising therapeutic approach. While those cannot directly reverse the A-to-T mutation, ABEs have enabled conversion of the *HBB*^S (HbS; β E6V) allele to a naturally occurring nonpathogenic variant *HBB*^G (HbG-Makassar; β E6A), restoring normal hemoglobin function without off-target effects (Chu et al., 2021; Newby et al., 2021).

Muscular Disease

Duchenne muscular dystrophy (DMD) is the most common genetic muscular disorder in humans, especially in male (Mendell et al., 2012), that causes severe and progressive muscle weakness and wasting due to insufficient expression of dystrophin from *DMD* (Guiraud et al., 2015).

Table 2. Clinical trials using the CRISPR-Cas technology

Disease	Target gene	Therapeutic approach	Editor	Delivery strategy	Product name	Sponsor	NCT ID	Phase
β-Hemoglobinopathies								
SCD/TDT	<i>BCL11A</i> enhancer	Gene disruption of the <i>BCL11A</i> erythroid enhancer in HSPCs via NHEJ	CRISPR-Cas9 RNP	Electroporation / ex vivo	CTX001 Ex-cel (Cas9g)	Vertex Pharmaceuticals & CRISPR Therapeutics	NCT03745287 NCT05329649 NCT05951205	Approved
TDT	<i>BCL11A</i> enhancer	Gene disruption of the <i>BCL11A</i> erythroid enhancer in HSPCs via NHEJ	CRISPR-Cas9 RNP	Electroporation / ex vivo	BRL-101	Bioray Laboratories	NCT04211480 NCT04205435 NCT05577312 NCT06300723	Phase I
TDT	<i>BCL11A</i> enhancer	Gene disruption of the <i>BCL11A</i> erythroid enhancer in HSPCs via NHEJ	CRISPR-Cas9 mRNA and sgRNA	Electroporation / ex vivo	ET-01	EdiGene	NCT04925206 NCT04390971 NCT05752123	Phase I
TDT	<i>HBG1/2</i> promoter	Gene disruption of the binding sites of the <i>HBG1/2</i> promoter repressor in HSPCs via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	RM-001	Guangzhou Reforgene Medicine	ChiCTR2100052858	Phase I
SCD/TDT	<i>HBG1/2</i> promoter	Gene disruption of the binding sites of the <i>HBG1/2</i> promoter repressor in HSPCs via NHEJ	CRISPR-AsCas12a RNP	Electroporation / ex vivo	EDIT-301 (Ren-icel)	Editas Medicine	ChiCTR2100053406 NCT04853576 NCT05444894	Phase I/II
TDT	<i>HBG1/2</i> promoter	Gene disruption of the binding sites of the <i>HBG1/2</i> promoter repressor in HSPCs via NHEJ	CRISPR-Cas12b	Undisclosed / ex vivo	VGB-Ex01	Shanghai Vitalgen BioPharma	NCT06041620	N/A
SCD	<i>HBG1/2</i> promoter	Gene disruption of the binding site of ABE in HSPCs via base editing		Electroporation BEAM-101 / ex vivo		Beam Therapeutics	NCT05456880	Phase II/III
SCD	<i>HBB</i>	Gene correction of the β -globin locus in HSPCs via HDR	CRISPR-Cas9 RNP with DNA template (AAV6)	Electroporation KMAU-001 / ex vivo	GPH-101 Nula-Cel	Kamau Therapeutics Graphite Bio	NCT04819841	Phase II/III
SCD	<i>HBB</i>	Gene correction of the β -globin locus in HSPCs via HDR	CRISPR-Cas9 RNP with ssODN	Electroporation CRISPR-SCD001 / ex vivo		Mark Walters, MD	NCT04774536	Phase II/III
Muscular diseases								
DMD	<i>DMD</i>	<i>DMD</i> exon 50 skipping via base editing	CBE	AAV9 / in vivo	GEN6050X	Peking Union Medical College Hospital	NCT06392724	Early Phase I
DMD	<i>DMD</i>	Up-regulation of expression of the full-length isoform of dystrophin using a CRISPRa system consisting of Cas9 fused to VP64	CRISPRa	AAV9 / in vivo	CRD-TMH-001	Cure Rare Disease	NCT05514249	Phase I

(Continued to the next page)

Table 2. Continued

Disease	Target gene	Therapeutic approach	Editor	Delivery strategy	Product name	Sponsor	NCT ID	Phase
DMD	<i>DMD</i>	DMD exon 51 skipping and restore the correct open reading frame	CRISPR-hfCas12Max	AAV / in vivo	HG302	HuidaGene Therapeutics	NCT06594094	Phase I
Eye diseases								
LCA	<i>CEP290</i>	Gene disruption of mutated allele in <i>CEP290</i> via NHEJ	CRISPR-Cas9	AAV5 / in vivo	EDIT-101	Editas Medicine	NCT03872479	Phase II
nAMD	<i>VEGF</i>	Knock down the expression of <i>VEGFA</i>	CRISPR-hfCas13Y	AAV / in vivo	HG202	HuidaGene Therapeutics	NCT06031727	Phase I
							NCT06623279	
Auditory disorder								
Congenital Hearing Loss	<i>OTOF</i>	RNA base editing of p.Q829X mutation in <i>OTOF</i> gene	CRISPR-Cas13	AAV / in vivo	HG205	HuidaGene Therapeutics	NCT06025032	Early Phase I
Autoimmune diseases								
T1D		Knockouts (B2M, TXNIP) insertions endoderm (PD-L1, HLA-E, TNFAIP3, and MANF)	CRISPR-Cas9	Undisclosed / ex vivo	VCTX210A / VCTX211	CRISPR Therapeutics & Viacyte	NCT05210530 / NCT05565248	Phase I / Phase II
Metabolic disorders								
Calcific Aortic Valve Stenosis	<i>LPA</i>	Gene disruption of <i>LPA</i> via NHEJ	CRISPR-Cas9 mRNA and sgRNA	LNP / in vivo	CTX-320	CRISPR Therapeutics AG	ACTRN1262300109 / 5651p	Phase I
PH1	<i>HAO1</i>	Gene disruption of <i>HAO1</i> via NHEJ	CRISPR-Cas12	LNP / in vivo	YOLT-203	Renji Hospital	NCT06511349	Early Phase I
Hypercholesterolemia								
HeFH	<i>PCSK9</i>	Gene disruption of <i>PCSK9</i> via base-editing	ABE mRNA and sgRNA	LNP / in vivo	VERVE-101	Verve Therapeutics	NCT05398029	Phase I
HeFH	<i>PCSK9</i>	Gene disruption of <i>PCSK9</i> via base-editing	ABE mRNA and sgRNA	LNP / in vivo	VERVE-102	VoltTech Therapeutics	NCT06164730 / NCT06461702	Early Phase I
HoFH / RH	<i>ANGPTL3</i>	Gene disruption of <i>ANGPTL3</i> via base-editing	ABE mRNA and sgRNA	LNP / in vivo	VERVE-201	Verve Therapeutics	NCT06451770	Phase I
Protein-folding disease								
ATTR	<i>TTR</i>	Gene disruption of <i>TTR</i> via NHEJ	CRISPR-Cas9 mRNA and sgRNA	LNP / in vivo	NTLA-2001	Intellia Therapeutics	NCT04601051 / NCT05697861 / NCT06128629 / NCT06672237	Phase III
Inflammatory diseases								
HAE	<i>KLKB1</i>	Gene disruption of <i>KLKB1</i> via NHEJ	CRISPR-Cas9 mRNA and sgRNA	LNP / in vivo	NTLA-2002	Intellia Therapeutics	NCT05120830 / NCT06262399 / NCT06634420	Phase III
Cancers								
Esophageal Cancer	<i>PD-1</i>	Gene disruption of <i>PD-1</i> in TILs via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo		Hangzhou Cancer Hospital	NCT03081715	N/A

(Continued to the next page)

Table 2. Continued

Disease	Target gene	Therapeutic approach	Editor	Delivery strategy	Product name	Sponsor	NCT ID	Phase
HCC	<i>PD-1</i>	Gene disruption of <i>PD-1</i> in TILs via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	Central South University Yang Yang	NCT04117764 NCT0304743	Phase I/II	
Malignancies	<i>PD-1</i>	Gene disruption of <i>PD-1</i> in EBV-specific CTLs via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	Chinese PLA General Hospital	NCT03545815	Phase I	
Mesothelin-positive Multiple Solid Tumors	<i>PD-1</i> and <i>TCR</i>	Gene disruption of <i>PD-1</i> and <i>TCR</i> in anti-mesothelin CAR-T cells via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	Chinese PLA General Hospital	NCT03166878	Phase I/II	
B-cell Malignancies	<i>B2M</i> and <i>TCR</i>	Gene disruption of <i>B2M</i> and <i>TCR</i> in anti-CD19 CAR-T cells via NHEJ	CRISPR-Cas9	Electroporation UCART019 / ex vivo	Chinese PLA General Hospital	NCT04117764 NCT04502446	Phase I	
Relapsed or Refractory T or B-Cell Malignancies	<i>B2M</i> and <i>TCR</i>	Gene disruption of <i>B2M</i> and <i>TCR</i> in anti-CD70 CAR-T cells via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	CRISPR Therapeutics AG	NCT04502446	Phase I	
Relapsed or Refractory Multiple Myeloma	<i>B2M</i> and <i>TCR</i>	Gene disruption of <i>B2M</i> and <i>TCR</i> in anti-BCMA CAR-T cells via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	CRISPR Therapeutics AG	NCT04244656	Phase I	
Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma	<i>PD-1</i> and <i>TCR</i>	Gene disruption of <i>PD-1</i> and <i>TCR</i> in anti-CD19 CAR-T cells via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	Caribou Biosciences	NCT04637763	Phase I	
Relapsed or Refractory CD19+ Leukemia or Lymphoma	<i>HPK1</i>	Gene disruption of <i>HPK1</i> in anti-CD19 CAR-T cells via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	Xijing Hospital	NCT04037566	Phase I	
Relapsed/Refractory CD5+ Hematopoietic Malignancies	<i>CD5</i> and <i>TCR</i>	Gene disruption of <i>CD5</i> and <i>TCR</i> in anti-CD5 CAR-T cells via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	Huazhong University of Science and Technology	NCT04767308	Early Phase I	
Viral diseases								
HPV	<i>HPV E6/E7</i>	Gene disruption of HPV <i>E6/E7</i> via NHEJ	CRISPR-Cas9	LNP / in vivo	First Affiliated Hospital, NCT03057912 Sun Yat-Sen University	N/A	Phase I	
HIV-1	<i>CCR5</i>	Gene disruption of <i>CCR5</i> in allogeneic stem cell via NHEJ	CRISPR-Cas9	Undisclosed / ex vivo	Affiliated Hospital to Academy of Military Medical Sciences	NCT03164135	N/A	
HIV-1	<i>5'- & 3'-LTRs and gag</i>	Excising large portions of the HIV genome via NHEJ	CRISPR-Cas9	AAV9 / in vivo	Excision BioTherapeutics	NCT05144386 NCT05143307	Phase I	
HBV	<i>HBV</i>	Epigenetic gene silencing through DNA methylation and heterochromatin formation	Epigenetic editing	LNP / in vivo	Tune Therapeutics	NCT06671093	Phase I	
Primary immunodeficiency disease								
CGD	<i>NCF1</i>	Prime editing of HSPCs targeting <i>NCF1</i> mutation	PE	Undisclosed / ex vivo	Prime Medicine	NCT06559176	Phase I/II	

DMD is the largest human gene (79 exons over 2.2 Mb of genomic DNA) located on the X-chromosome, and the site of numerous mutations, primarily deletions (68%), point mutations (11%), and duplications (11%) (Aartsma-Rus et al., 2006; Bladen et al., 2015). Dystrophin is essential for preserving the biomechanical characteristics of fiber strength, flexibility, and stability in muscle (Blake et al., 2002). Through the dystrophin-associated protein complex (DAPC), the dystrophin protein functions as a molecular shock absorber, creating a mechanical connection between the extracellular matrix and actin cytoskeleton.

Most patients succumb to death in their early adult years due to heart and respiratory failure, with a median survival of 28.1 years (95% CI 25.1, 30.3) (Broomfield et al., 2021). Despite intensive clinical efforts focused on managing coronary heart disease, providing respiratory support, and administering corticosteroid, this debilitating illness remains incurable. Recent studies have explored the use of CRISPR-Cas, BEs, and CRISPRa technologies to restore dystrophin expression in affected patients. CRISPR-Cas is able to induce indels at the splice donor or acceptor site, and skipping exon 51 resulted in the production of a shorter but functional dystrophin protein that could improve muscle function (Amoasii et al., 2017). Under this strategy, a clinical trial (NCT06594094) (HuidaGene Therapeutics, 2024) is in progress using CRISPR-hfCas12Max (Zhang et al., 2022a), delivered via a single all-in-one AAV vector, intravenously. This therapeutic candidate, HG302, demonstrated restoration of dystrophin protein expression in muscle fibers and improvement of muscle function to near wild-type levels in preclinical studies involving humanized *DMD* mouse models (HuidaGene Therapeutics, 2023b). Similarly, another clinical trial (NCT06392724) (GenAssist, 2024) for GEN6050X (GenAssist) aims to skip exon 50 using its proprietary Targeted AID-mediated Mutagenesis (TAM) CBE, delivered intravenously via dual AAV9 vectors (Yuan et al., 2018).

The regulation of gene expression through CRISPRa facilitates the modulation of disease-modifying genes, potentially delaying disease progression or alleviating symptoms, thereby providing therapeutic opportunities for all patients with DMD regardless of their dystrophin mutations (Mollanoori et al., 2021). Recently, Cure Rare Disease, Inc. in the United States initiated the first CRISPR-based clinical trial on DMD (NCT05514249) (Cure Rare Disease, 2022). This n-of-1 clinical trial was conducted on a 27-year-old patient with DMD having muscular dystrophin deficiency due to an exon 1 deletion. The therapeutic agent named CRD-TMH-001 was designed to upregulate the expression of an alternative dystrophin isoform to bypass the effect of mutation by intravenously delivering a high dose of AAV9-dSaCas9-VP64 (1×10^{14} vg/kg), where VP64 is tetrameric repeat of the herpes simplex virus type 1 transcription activator VP16 (Perez-Pinera et al., 2013). Regrettably, the patient experienced cardiac arrest and died two days later, and autopsy findings indicate lung damage as the underlying cause. The study team concluded that these side effects were not due to the CRISPR-Cas technology itself, but rather due to the high-dose usage of AAV (Lek et al., 2023a). It highlights the toxicity concerns associated with AAV-based gene therapies and has important implications for the future development of gene therapeutics.

Eye Disease

Leber congenital amaurosis (LCA): Leber congenital amaurosis (LCA) is an inherited degenerative retinal disease that results in severe visual impairment and blindness at an early age, with an incidence of approxi-

mately 1 in 80,000 (Tsang and Sharma, 2018). This disease has more than 20 types and is distinguished by genetic causes and symptoms. The most common type, LCA10, results from loss-of-function mutations in *CEP290*, which is essential for the assembly and phototransduction of the photoreceptor cilia (den Hollander et al., 2006; Stone, 2007). The IVS26 mutation (c.2991 + 1655A > G) in intron 26 of *CEP290* creates an aberrant splice site, resulting in a premature stop codon, and accounts for more than 15% of all LCA cases (den Hollander et al., 2006).

Recent advances in CRISPR-Cas9 gene editing, the removal or correction of the IVS26 mutation via NHEJ and HDR pathways in iPSC and LCA10 mouse models have demonstrated potential therapeutic effects (Burnight et al., 2017; Maeder et al., 2019; Ruan et al., 2017). EDIT-101, developed by Editas Medicine, is designed to remove IVS26 mutation through subretinal injection of an AAV vector delivering SaCas9 and two sgRNAs that target sequences flanking the mutation site, thereby restoring normal *CEP290* expression (Ledford, 2020). Phase I/II clinical trial (NCT03872479) (Editas Medicine, 2019) established it as the first *in vivo* CRISPR-Cas9 gene-editing therapy to receive regulatory approval for clinical trial initiation, and the trial reported no severe adverse effects related to the treatment or procedure, and no dose-limiting toxicities were observed (Pierce et al., 2024).

Neovascular age-related macular degeneration (nAMD): Age-related macular degeneration (AMD) is the most common cause of blindness in the elderly. It is characterized by irreversible vision loss caused by a progressive deterioration of the macula, the central region of the retina (Ferris et al., 1984). Neovascular AMD (nAMD), which accounts for 80-90% of AMD blindness, is primarily caused by abnormalities in vascular endothelial growth factor (VEGF) signaling (Bressler et al., 1988). Overexpression of VEGF-A, one of several isoforms of VEGF, leads to abnormal growth of choroidal neovascularization (CNV), which is the key pathological characteristic of nAMD (Amadio et al., 2016). The result of neovascularization is very delicate and susceptible to bleeding and fluid leakage, leading to deterioration of central vision.

HuidaGene Therapeutics developed HG202 (NCT06031727, NCT06623279) (HuidaGene Therapeutics, 2023a, 2025), an RNA targeting gene therapy that utilizes high-fidelity CRISPR-Cas13Y delivered via unilateral subretinal injection using an rAAV vector to knock down VEGF-A expression (Tong et al., 2023). This strategy was demonstrated by a single subretinal treatment that suppressed *VegfA* mRNA expression by more than 40% and reduced the area of laser-induced CNV in the eyes by 87% in mice (Shi et al., 2023, 2024).

Auditory Disorder

Congenital hearing loss refers to hearing impairment present before a child acquires speech abilities and affects approximately 1 in 500 newborns (Mehl and Thomson, 1998). One of the primary causes of auditory neuropathy spectrum disorder and the cause of 1-8% of congenital non-syndromic hearing loss is the c.2485 C > T (p.Q829X) nonsense mutation in the *OTOF*, which encodes the calcium-binding protein otoferlin (Iwasa et al., 2013; Migliosi et al., 2002; Yang et al., 2013b). HG205 was evaluated in clinical trials (NCT06025032) (HuidaGene Therapeutics, 2023c) as a treatment that restores functional protein expression by targeting mutant mRNA rather than altering genomic DNA. The approach involves delivering a CRISPR-Cas13 system via intracochlear injection of

an AAV vector, enabling RNA base editing to repair the mutation at the transcript level (Xue et al., 2023), however, the trial was withdrawn due to the absence of enrolled patients in China.

Autoimmune Disease: Type 1 Diabetes Mellitus (T1D)

T1D is an autoimmune disease characterized by the immune-mediated destruction of pancreatic β -cells, which are responsible for insulin production (Harrison et al., 2004). Insulin deficiency leads to chronic hyperglycemia, which can cause long-term complications affecting various organs, including the eyes, cardiovascular system, kidneys, nerves, and oral health (Shojaeian and Mehri-Gahfarokhi, 2018). Although T1D can occur at any age, it is more frequently identified during childhood or adolescence and resulted in life-threatening in the absence of appropriate treatment. The conventional treatment for T1Ds includes frequent blood glucose monitoring and subcutaneous insulin injections, requiring strict adherence to administration protocols to maintain blood glucose levels (Aathira and Jain, 2014). Because of the inconvenience of daily insulin injections, the transplantation of autologous stem cell-derived β -cells offers unlimited cell supply and avoids graft rejection for patients with T1D (Millman et al., 2016). However, without immunosuppression, persistent autoimmune responses rapidly destroy the transplanted cells and immunotherapy to enhance β -cell tolerance has not yet been successfully developed (Atkinson et al., 2019), limiting this approach to the most severe cases and hindering broader application (Bruni et al., 2014; Gruessner and Sutherland, 2005).

In the absence of a definitive cure, CRISPR-Cas-based therapeutic strategies suggest various approaches to improve β -cell survival by modulating immune responses, and increase insulin production. A representative method involves the CRISPR-Cas9-mediated knockout of β 2-microglobulin ($B2M$), an essential component of the MHC-I signaling pathway, followed by insertion of the $PD-L1$ at $B2M$ locus by HDR pathway to facilitate circumvention of transplant rejection (Sluch et al., 2019). Based on this concept, in 2022, CRISPR Therapeutics and ViaCyte introduced VCTX210A. VCTX210A is composed of genetically modified allogeneic pancreatic endoderm cells (PEC210A) encapsulated within an implantable device. Following implantation, the cells differentiate into β -cells and other islet cells in the perforated device and started to supply insulin into the blood. The efficacy and safety of VCTX210A are being evaluated in clinical trial NCT05210530 (CRISPR Therapeutics, 2022; Philippidis, 2022). Additionally, a new study, NCT05565248 (CRISPR Therapeutics, 2023a), is underway to assess the safety, efficacy, and tolerance of VCTX211, an allogeneic gene-edited stem cell (PEC211)-derived product (Karpov et al., 2023). VCTX211 exhibits similar modality with that of VCTX210A, but the PEC211 consists of $B2M$, $TXNIP$ deletion and $PD-L1$, $HLA-E$, $TNFAIP3$, $MANF$ insertion to improve functionality and enhanced cell fitness in patients with T1D.

Metabolic Disorder

Calcific aortic valve stenosis: Calcific aortic stenosis (AS) is a progressive fibrocalcific condition characterized by the gradual thickening and accumulation of calcium in the aortic valve leaflets. Over time, this process leads to severe narrowing of the valve, resulting in left ventricular hypertrophy and obstruction of cardiac outflow, which significantly limits blood

supply to the body (Rajamannan et al., 2011). The pathogenesis of calcific AS is complex, beginning with fibrocalcific processes in the aortic valve, including the overproduction and disorganization of collagen fibers. These alterations are exacerbated by endothelial cell damage driven by lipid-derived species, cytokines, and other stressors, such as mechanical strain and radiation injury. Subsequently, LDL and lipoprotein(a) (LP(a)) infiltrate the valve, promoting the recruitment of inflammatory cells and accelerating inflammation and mineralization of the valve leaflets (Lindman et al., 2016).

Currently, no effective pharmacotherapy is available for this condition, and patients with severe cases require surgical aortic valve replacement. Due to the complex etiology of the disease, therapeutic efforts have focused on addressing contributory factors rather than the root cause. CTX-320, developed by CRISPR Therapeutics, targets LPA to reduce LP(a) expression by delivering Cas9 mRNA and sgRNA to the liver via LNP-mediated intravenous injection (Morrow et al., 2023). Preclinical data from cynomolgus monkeys demonstrated dose-dependent gene editing results, with a single 2 mg/kg infusion resulting in a 94% reduction in mean plasma LP(a) levels, which persisted until day 224. CTX-320 is currently undergoing a Phase I clinical trial (ACTRN12623001095651p) (CRISPR Therapeutics, 2023b).

Hypercholesterolemia: Patients with familial hypercholesterolemia (FH) are unable to recycle low-density lipoprotein cholesterol (LDL-C). Normally, LDL-C levels increase with age; however, patients are born with high LDL-C levels, resulting in plaque buildup and a high risk of coronary heart disease. FH is mostly caused due to the mutation of the $LDLR$ (~80%) for LDL-C receptor (LDLR) that transports LDL-C from the blood into cells to use or remove from the body (Defesche et al., 2017). Additionally, mutations in $APOB$ and $PCSK9$, which encode apolipoprotein B and proprotein convertase subtilisin/kexin type 9 (PCSK9), respectively, are responsible for FH (Alves et al., 2014; Cunningham et al., 2007). As the main component of LDL, apolipoprotein B plays an essential role in the interaction between LDL and LDLR (Behbodikhah et al., 2021). In the case of PCSK9, which regulates LDL receptor degradation via lysosomes, gain-of-function mutations decrease LDL transport to the liver, contributing to FH development (Abifadel et al., 2009).

VERVE-101 and VERVE-102, the therapeutic candidates for heterozygous FH (HeFH) developed by Verve Therapeutics, are designed to disrupt $PCSK9$ in the liver by targeting the splice donor site to introduce a premature stop codon and inactivate $PCSK9$ (Lee et al., 2023; Vafai et al., 2024). They utilize ABE mRNA and sgRNA to target $PCSK9$, which are encapsulated in standard LNP for VERVE-101 and proprietary GalNAc LNP in VERVE-102 (NCT05398029, NCT06164730) (Verve Therapeutics, 2022, 2024a). GalNAc LNP utilizes the GalNAc ligand, which binds to the asialoglycoprotein receptor (ASGPR) that is primarily expressed in the liver (Kasiewicz et al., 2023), whereas the standard LNP system mediates LDLR for endocytosis. This renders GalNAc LNP a more applicable liver-directed delivery system for patients with FH who have reduced LDLR levels. VERVE-101 or 102 was administrated by one-time intravenous infusion, and participants who received VERVE-101 showed a ~48% reduction in LDL-C and ~84% decrease in PCSK9 levels. However, the clinical trial of VERVE-101 was stopped because of side effects; the participant showed signs of organ damage and blood clotting. Participant recruitment is underway for VERVE-102; nonetheless, non-human primate (NHP) data have demonstrated a 62% decrease in LDL-C levels sustained for 6 months with

a single infusion.

YOLT-101, developed by YolTech Therapeutics (NCT06461702) (YolTech Therapeutics, 2024b), attempts long-term inhibition of PCSK9 in patients with HeFH using the hpABE5 system in combination with optimized GalNAc LNP. Following administration to NHPs, YOLT-101 demonstrated sustained LDL-C reduction for up to 2 years. In a clinical study, patients who received 0.6 mg/kg dose of YOLT-101 exhibited 72.5% reduction in PCSK9 levels and 50.4% reduction in LDL-C levels at 16 weeks post-treatment as reported in a recent preprint (Wan et al., 2025).

Patients with refractory hypercholesterolemia (RH), including those with homozygous FH (HoFH) and compound-HeFH carrying two mutant *LDLR* alleles, result in at least two-fold higher plasma LDL-C levels than patients with HeFH. These individuals respond poorly to existing treatments, even at the maximal tolerable doses, and develop heart disease in the first two decades of life (Li and Wu, 2022). For instance, patients with HoFH are unresponsive to PCSK9-targeting drugs because they have a nonfunctional *LDLR*. To address this issue, VERVE-201 is currently in Phase Ib trial (NCT06451770) (Verve Therapeutics, 2024b). VERVE-201, comprising an mRNA encoding ABE and an sgRNA targeting the angiopoietin-like 3 (ANGPTL3) gene, was intravenously administered to reach the liver using GalNAc LNP (Lee et al., 2024). This drug was designed to inhibit ANGPTL3 expression in the liver to decrease the synthesis of LDL-C and triglycerides. Preclinical data for NHP infused with 3 mg/kg VERVE-201 presented a 95% mean reduction in blood ANGPTL3 levels, and in the HoFH NHP model, LDL-C levels decreased 46% from 458 to 247 mg/dL.

Primary hyperoxaluria type 1 (PH1): The inherited metabolic disorder primary hyperoxaluria type 1 (PH1) is due to mutations in the *AGXT* gene that encodes the hepatic enzyme alanine-glyoxylate aminotransferase (AGXT) (Latta and Brodehl, 1990), and loss or dysfunction of this protein leads to excessive oxalate production. Because oxalate cannot be further metabolized, it accumulates and is excreted in the urine, which results in progressive renal deposition and systemic oxalosis (Cochat and Rumsby, 2013).

YOLT-203 utilizes LNP delivery of a CRISPR-Cas12 system to permanently reduce oxalate levels by disrupting glycolate oxidase (GO), an enzyme encoded by the *HAO1* gene and critical for hepatic oxalate biosynthesis. Targeting *HAO1* rather than *AGXT* may offer therapeutic advantages, as PH1 can result from a heterogeneous spectrum of *AGXT* mutations (Williams et al., 2009). In a Phase I clinical study (NCT06511349) (YolTech Therapeutics, 2024a), the agent demonstrated the potential to normalize urinary oxalate excretion in patients with PH1; individuals who received the higher dose of 0.45 mg/kg exhibited a ~70% reduction in 24 h urinary oxalate levels, which was sustained throughout the 16-week primary observation period.

Protein-folding Disease: Transthyretin Amyloidosis (ATTR)

Amyloidosis is caused by the accumulation of misfolded proteins in organs. Accumulation of misfolded transthyretin (TTR) protein in the body, usually in the heart, leads to transthyretin amyloid-cardiomyopathy (ATTR-CM), which makes the heart to thicken and become stiff (Ruberg et al., 2019). ATTR is classified into two types: wild-type ATTR (wtATTR), which is not associated with genetic mutations in the *TTR*, and hereditary ATTR (hATTR), which is associated with mutations in the *TTR*. Misfolding of TTR

is related to the pH or temperature around the protein, and misfolding of wild-type TTR is related to aging, wherein the protein tetramer is damaged and dissociated into a monomer that becomes denatured and misfolded. In hATTR, the mutant *TTR* associated with ATTR-related symptoms is inherited from the parents and can manifest at any age (Kelly et al., 1997). In both cases, the median survival time after the disease onset without treatment is 2.5–3.5 years.

Research on the gene editing strategy has focused on knocking out the *TTR* in the liver because more than 99% of circulating TTR is produced in the liver. Based on this mechanism, clinical trials for ATTR-CM and ATTR-PN (polyneuropathy) using a drug named NTLA-2001, developed by Intellia Therapeutics, have progressed to Phase III (NCT04601051, NCT05697861, NCT06128629, and NC06672237) (Gillmore et al., 2021; Intellia Therapeutics, 2020, 2023a, 2023b, 2024b). NTLA-2001 incorporates human codon-optimized SpCas9 mRNA and sgRNA, both encapsulated within a liver-targeting LNP delivery system, and is administered via intravenous infusion. Proprietary LNP employs a ionizable lipid optimized for hepatic delivery, and enhance endosomal escape. A single administration of NTLA-2001 resulted in sustained reduction in serum TTR protein levels, observed as early as 14 days post-treatment, with patients receiving a 0.1 mg/kg dose demonstrating a reduction exceeding 47%, whereas those receiving 0.3 mg/kg achieved a reduction of more than 80%.

Inflammatory Disease: Hereditary Angioedema (HAE)

HAE is a rare autosomal dominant disorder caused by mutations in the *SERPING1*, which encodes a C1 esterase inhibitor (C1-INH) that regulates contact activation pathways. Type I HAE arises from a deficiency in C1-INH, whereas Type II HAE results from dysfunctional C1-INH. Both forms lead to increased levels of bradykinin, a peptide that promotes vascular permeability and tissue swelling (Kaplan and Joseph, 2010).

The pathogenesis of HAE involves a cascade in which the *KLKB1* produces prekallikrein, which is indirectly activated by C1-INH into kallikrein. Subsequently, kallikrein acts on kininogen, leading to the generation of bradykinin, and which process is inhibited by C1-INH. Elevated bradykinin levels activate the bradykinin receptors 1 and 2, among which bradykinin receptor 2 is closely associated with the hallmark symptoms of HAE. These symptoms include episodes of severe and unpredictable swelling that can occur every few days or weeks. Swelling can last for several hours to days and can be life-threatening, particularly when it affects the throat.

NTLA-2002, developed by Intellia Therapeutics, targets *KLKB1* and blocks plasma kallikrein production, thereby preventing bradykinin formation (NCT05120830, NCT06262399, and NCT06634420) (Intellia Therapeutics, 2021, 2024a, 2025). This therapy comprises SpCas9 mRNA and sgRNA with liver-targeting LNP, which are administered as a single intravenous infusion to patients with HAE. Plasma kallikrein levels were reported to be maximally reduced by 8 weeks, with a 67% reduction in patients receiving 25 mg and a 95% reduction in those receiving 75 mg dose. Reduced kallikrein levels were sustained for at least 32 weeks in the 75 mg cohort and for more than 48 weeks in the 25 mg cohort. In terms of HAE attacks, patients in the study had baseline attack rates of 1.1 to 7.2 attacks per month. However, the 25 mg group demonstrated a 91% mean reduction in the attack frequency, and none of the patients in this group experienced any HAE attack 10 weeks after treatment (Longhurst et al., 2024).

Cancers

The CRISPR-Cas9 system is applied not only to genetic disorders but also to acquired diseases, such as cancer, wherein the system is used to enhance lymphocytes and leukocytes to target and attack cancer cells. Recently, immunotherapy using chimeric antigen receptor-T (CAR-T), the genetically modified T cells expressing chimeric antigen receptors that recognize specific cancer cell antigens, has attracted attention because of its flexibility in targeting various cancer types.

In CAR-T and CAR-NK immunotherapies, CRISPR-Cas is employed to enhance the functionality and specificity of immune cells in targeting cancer cells. The most commonly used strategy is to knockout the *PD-1* in T cells, which binds to PD-L1 on the surface of cancer cells and suppresses T-cell activity (Zhao et al., 2018). Once eliminated, the modified T cells are activated to mount a strong immune response against cancer cells and reduce immune evasion of the cells (Ko, 2015; Wang et al., 2016). In this context, clinical trials of autologous tumor-infiltrating lymphocytes (TILs), knocked out for the *PD-1* using CRISPR-Cas9, are currently underway in patients with esophageal cancer (NCT03081715) (Hangzhou Cancer Hospital, 2017) and advanced hepatocellular carcinoma (HCC) (NCT04417764) (Central South University, 2019), as well as for *PD-1* KO autologous EBV-specific cytotoxic T lymphocytes (CTLs) in patients with malignancies (NCT03044743) (Yang, 2017).

By knocking out the T-cell receptor (TCR) and *PD-1* in CAR-T cells using the CRISPR-Cas system, cells can minimize the host immune response and respond more efficiently to their redirected targets. When applied to mesothelin-targeting CAR-T cells, which are in clinical trials in patients with mesothelin-positive multiple solid tumors (NCT03545815) (Chinese PLA General Hospital, 2018), this strategy can target mesothelin-overexpressing cancer cells while simultaneously addressing potential side effects, such as graft-versus-host disease (GVHD). Moreover, a clinical trial in patients with B-cell malignancies (NCT03166878) (Chinese PLA General Hospital, 2017) used a strategy that knocked out TCR and beta-2 microglobulin (β 2m) to reduce MHC-I expression and improve immune recognition of CAR-T cells.

The NCT04502446 (CRISPR Therapeutics, 2020b) clinical trial employed a strategy to improve therapeutic efficacy while reducing the host immune response by simultaneously knocking out TCR and MHC-I in allogeneic CAR-T cells targeting CD70 overexpressed in specific cancer cells (Jacobs et al., 2015). In parallel, CAR gene insertion has been used to improve the functionality of CAR-T cells in an allogeneic environment. A similar strategy was used in NCT04244656 (CRISPR Therapeutics, 2020a), which aimed to improve the therapeutic efficacy and reduce the host immune responses by simultaneously knocking out TCR and MHC-I in CAR-T cells, targeting B-cell maturation antigen (BCMA), a protein highly expressed in multiple myeloma cells (Shah et al., 2020).

CD19 is a protein specifically expressed in B-cell carcinomas, and approaches that utilize CD19-targeting CAR-T cells while simultaneously silencing *PD-1* and *TCR* to increase persistence and anticancer activity are being explored. This strategy is also being investigated in a clinical trial (NCT04637763) (Caribou Biosciences, 2021) in patients with B-cell non-Hodgkin lymphoma. As a strategy to increase the effectiveness of the CAR-T cell therapy, a clinical trial (NCT04037566) (Xijing Hospital, 2019) is currently underway to improve the effectiveness of CAR-T cells targeting CD19 by inhibiting hematopoietic precursor kinase 1 (HPK1), a negative

regulator that knocks down the TCR signaling pathway (Zhang et al., 2022b). An ongoing clinical trial (NCT04767308) (Huazhong University of Science and Technology, 2021) is aiming to further activate the T cell signaling pathway by turning off *CD5*, a negative regulator, along with TCR, allowing CAR-T cells to more effectively recognize and attack cancer cells. Furthermore, because *CD5* has the potential to trigger fratricide between CAR-T cells, its removal may prevent self-destruction of *CD5*-targeted CAR-T cells.

Strategies to treat human papillomavirus (HPV)-related cervical cancer target the *HPV E6* and *E7* genes and virus-derived oncogenes that are expressed only in cancer cells. The *E6* protein ubiquitinates and degrades the tumor suppressor protein *p53* (Scheffner et al., 1990, 1993), an important protein that plays a role in cell cycle regulation, DNA damage repair, and apoptosis induction. When *E6* inhibits *p53*, cells survive and proliferate in an abnormal state, making them more likely to become cancerous. The *E7* protein binds to and inactivates another cancer suppressor protein, the retinoblastoma protein *pRb* (Giarré et al., 2001). *pRb* plays an important role in cell cycle regulation by inhibiting the entry of cells from G1 to S phase. When *pRb* is inhibited by *E7*, the cell cycle progresses uncontrollably, resulting in abnormal cell proliferation. A clinical trial, NCT03057912 (First Affiliated Hospital, 2018), is underway to knock out *E6* and *E7* using a CRISPR-Cas9 plasmid surrounded by Poloxamer 407-based gel as a therapeutic strategy, administered twice per week for 4 weeks. Because *E6* and *E7* are only expressed in HPV-infected cells, treatment is likely to selectively induce apoptosis and growth inhibition in HPV-infected cervical cancer cells with no effect on normal cells (Honegger et al., 2015, Pal and Kundu, 2020).

Viral Diseases

Human immunodeficiency virus (HIV) infection: The HIV, a member of the retrovirus family, specifically targets $CD4^+$ T cells (Février et al., 2011). In the early stages of infection, there is a latency period that typically lasts approximately 10 years, when no new virions are produced; however, the viral genome integrates into the host cell DNA and remains intact. During the active phase of HIV infection, the virus rapidly replicates, and as the virus increasingly weakens the immune system and reduces the $CD4^+$ T cell count to critical levels (below ~ 200 cells/ μ l), the person reaches the stage of AIDS (Krentz et al., 2004). Owing to the lifecycle of HIV, drugs that suppress HIV replication is ineffective against latent HIV infection (Siliciano et al., 2003). However, these latent cells may subsequently be reactivated, resulting in the production of new virions (Ruelas and Greene, 2013). Thus, latent HIV infection presents a major challenge to treatment.

Recently, clinical studies have been actively conducted on the use of CRISPR-Cas9 technology for HIV-1 treatment. For example, a clinical trial (NCT03164135) (Affiliated Hospital to Academy of Military Medical Sciences, 2017) demonstrated resistance to HIV in patients with hematological malignancies via *CCR5* knockout. In addition to HIV-binding to the *CD4* receptor, the coreceptor *CCR5* further facilitates cellular invasion (Bleul et al., 1997). In the trial, a patient with acute lymphoblastic leukemia showed remission 19 months after allogeneic stem cell transplantation from donor cells with a *CCR5* knockout without any gene editing-associated adverse effects. However, the proportion of modified lymphocytes was low (5%), prompting the exploration of advanced strategies to improve the efficiency of gene modification (Xu et al., 2019). Additionally, EBT-101, a

CRISPR-Cas9-based gene therapy in Phase 1 clinical trials (NCT05144386) ([Excision BioTherapeutics, 2022](#)), is employing an AAV vector to deliver CRISPR-Cas9 and two sgRNAs to target flanking long terminal repeat 1 (LTR1) and GagD within the HIV-1 provirus by a single intravenous administration ([Dash et al., 2019](#)). Preliminary results from these trials on three participating patients have been published and revealed no dose-limiting toxicities or severe adverse events. A long-term follow-up study (EBT-101-002; NCT05143307) ([Excision BioTherapeutics, 2023](#)) is currently enrolling participants.

Hepatitis B virus (HBV): Chronic hepatitis B is a persistent inflammatory condition of the liver caused by infection with the hepatitis B virus (HBV) ([Hoofnagle, 1990](#)). The most widely used treatment related to nucleos(t)ide analogs (NA), which inhibit viral replication, along with immunomodulators that enhance the host immune responses ([Zoulim and Locarnini, 2009](#)). However, the covalently closed circular DNA (cccDNA) of HBV can persist within hepatocytes, presenting a major barrier to complete viral clearance and increasing the risk of viral reactivation upon discontinuing treatment ([Richman, 2000](#)). In addition, these therapies typically result in viral suppression rather than a functional cure, which is defined as the loss of the hepatitis B surface antigen (HBsAg) ([Lai et al., 2007; Liaw et al., 2009](#)). To address these limitations, TUNE-401 (NCT06671093) ([Tune Therapeutics, 2024b](#)) is being evaluated in an ongoing clinical trial. It utilizes mRNA encoding a sgRNA and dCas9 fused to a methyltransferase and an additional epigenetic repressor, delivered via LNPs through a single intravenous drip administration. The intervention targets conserved master controller sequence in HBVs to induce methylation of viral DNA and transcriptional repression that potentially facilitate sustained antiviral effects ([Tune Therapeutics, 2024a](#)).

Primary Immunodeficiency Disease

Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency disease that causes recurrent and life-threatening infections with bacteria, mycobacteria, and fungi ([Heyworth et al., 2003](#)). CGD results from mutations in genes encoding subunits of the phagocyte NADPH oxidase complex, which is responsible for generating ROS during the respiratory burst of phagocytosis. Affected neutrophils fail to produce sufficient ROS, leading to impaired microbial killing ([Seger, 2010](#)).

PM359 (NCT06559176) ([Prime Medicine, 2024](#)), developed by Prime Medicine, is an autologous HSPC therapy that represents the first clinical trial application of prime editing technology. It aimed to correct the delGT mutation in the *NCF1*, which causes the most common pathogenic variant of p47^{phox}-deficient form of CGD. A single dose was well tolerated and restored NADPH oxidase activity to levels significantly exceeding the minimum threshold required for clinical benefit ([Prime Medicine, 2025](#)).

Concluding Remarks and Future Perspectives

The CRISPR-Cas technology is an innovative approach for gene editing and is promising for the treatment of various genetic diseases. Unlike traditional treatments that only alleviate symptoms, this technology can target the root cause of both rare and common genetic disorders by directly and permanently modifying the causative genetic variants.

The therapeutic potential of this technology has led to extensive research collaboration. Universities and research institutions can leverage

their advantages in basic research to provide enterprises with innovative technical approaches and theoretical support. In addition, large pharmaceutical companies are partnering with biotech firms specializing in the CRISPR-Cas technology to achieve complementary advantages. For example, the Broad Institute at MIT and Harvard University have collaborated with multiple biopharmaceutical companies to conduct research on CRISPR-Cas-based disease treatment, accelerating the translation of research into clinical applications. Similarly, Bayer and Editas Medicine reached a cooperative agreement to develop treatments for ophthalmic diseases based on the CRISPR-Cas technology.

Despite its transformative potential, several challenges remain in the therapeutic application of CRISPR-Cas technologies. Long-term safety risks include off-target effects, unintended mutations, and genotoxicity. Even with high-fidelity Cas variants and improved guide RNA design, rare but harmful off-target events cannot be ruled out. Moreover, the long-term consequences of genome editing, particularly in stem cells or tissues with proliferative capacity, remain poorly understood. Therefore, continuous preclinical and clinical monitoring, along with the development of reversible or self-limiting editing systems, is imperative. Another major challenge is immunogenicity. Pre-existing adaptive immune responses against Cas9, derived from bacteria, have been identified in humans. In particular, the major orthologs of the Cas9 protein, SpCas9 and SaCas9, have shown a high probability of stimulating human immune responses. Antibodies against SaCas9 and SpCas9 were detected in 78% and 58% of the donors, respectively, and antigen-specific T cells were identified in 78% and 67% of the donors, respectively ([Charlesworth et al., 2019](#)). These findings indicate that the potential immunological implications of the CRISPR-Cas9 system should be thoroughly evaluated for clinical application. Moreover, Ethical considerations mainly involve germline editing because somatic cell editing does not affect future generations. Although current clinical applications only focus on somatic cells, public concern is high following reports of embryo editing and highlighting the need for responsible use through transparency, public engagement, and strict oversight.

Owing to safety concerns, the FDA has conducted limited clinical trials on gene-editing technologies. Similarly, the World Health Organization has issued international guidelines emphasizing that gene-editing research must prioritize human safety and ethical considerations ([World Health Organization, 2021](#)). In 2023, Vertex Pharmaceuticals made significant progress in raising awareness with the approval of CASGEVY, a therapeutic agent that utilizes the CRISPR-Cas technology, through an ex vivo approach. This marks a significant milestone, suggesting its potential to meet safety and efficacy standards. To expand the use of the CRISPR-Cas technology in vivo, further research is required to address safety issues, optimize delivery methods, and improve the spatial configuration of the CRISPR-Cas systems. Efforts are being made to develop and improve various delivery systems, including LNPs and AAVs, with the need for new approaches to improve the stability and efficiency of gene-editing systems.

Despite the scope for improvement, the CRISPR-Cas technology is anticipated to become an essential tool for the treatment and management of various diseases for several reasons. First, with deeper research on gene functions and interactions, more precise gene editing can be achieved. It not only accurately corrects single-base mutations, but also adjusts complex gene structures, such as large fragment gene insertions, deletions, or replacements, while further reducing off-target effects to enhance treat-

ment safety and effectiveness, thus enabling the effective treatment of more complex genetic diseases. Second, the development of more efficient and safe delivery systems can lead to more precise delivery of the CRISPR-Cas system to target cells, improve delivery efficiency, and minimize its impact on normal cells. For example, an LNP-based delivery system may be optimized in terms of structure and composition to better penetrate the cell membrane and deliver the CRISPR-Cas system into the cell nucleus. Third, personalized medicine will be readily available. Based on each individual's unique genetic information, the CRISPR-Cas technology can be used to tailor personalized treatment plans. By precisely analyzing patient genes to determine specific mutation sites of pathogenic genes and designing targeted CRISPR-Cas gene-editing strategies, true precision medicine can be achieved, greatly improving treatment effects and reducing unnecessary side-effects. Finally, the application of the CRISPR-Cas technology will be expanded to include other fields. In addition to the currently focused areas, such as genetic diseases and cancer, the technology may provide breakthroughs in the treatment of infectious diseases, cardiovascular diseases, and metabolic diseases. As discussed in this review, as long as the CRISPR-Cas technologies continue to develop, they are expected to achieve remarkable breakthroughs in clinical application in the future, playing a pivotal role in biomedical sciences.

Acknowledgments

This research was supported by the Chung-Ang University research grant in 2022. This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (RS-2024-00461596).

Conflict of Interest

The authors have no conflict of interest.

References

Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJB, Den Dunnen JT. 2006. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. *Muscle Nerve*. 34: 135–144.

Athira R, Jain V. 2014. Advances in management of type 1 diabetes mellitus. *World J Diabetes*. 5: 689–696.

Abifadel M, Rabès JP, Devillers M, Munnich A, Erlich D, et al. 2009. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. *Hum Mutat*. 30: 520–529.

Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, et al. 2017. RNA targeting with CRISPR-Cas13. *Nature*. 550: 280–284.

Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, et al. 2019. A cytosine deaminase for programmable single-base RNA editing. *Science*. 365: 382–386.

Adams D, Gonzalez-Duarte A, ORiordan WD, Yang CC, Ueda M, et al. 2018. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. *N Engl J Med*. 379: 11–21.

Affiliated Hospital to Academy of Military Medical Sciences. 2017. Safety of transplantation of CRISPR CCR5 modified CD34+ cells in HIV-infected sub-jects with hematological malignancies, NCT03164135. <https://clinicaltrials.gov/study/NCT03164135>.

Allife Medical Science and Technology. 2019. iHSCs with the gene correction of *HBB* in patients with β-thalassemia mutations, NCT03728322. <https://clinicaltrials.gov/study/NCT03728322>.

Alves AC, Etxebarria A, Soutar AK, Martin C, Bourbon M. 2014. Novel functional *APOB* mutations outside LDL-binding region causing familial hypercholesterolemia. *Hum Mol Genet*. 23: 1817–1828.

Amadio M, Govoni S, Pascale A. 2016. Targeting VEGF in eye neovascularization: what's new?: a comprehensive review on current therapies and oligonucleotide-based interventions under development. *Pharmacol Res*. 103: 253–269.

Amistadi S, Maule G, Cicani M, Ensink MM, De Keersmaecker L, et al. 2023. Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor. *Mol Ther*. 31: 1647–1660.

Amoasii L, Long C, Li H, Mireault AA, Shelton JM, et al. 2017. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. *Sci Transl Med*. 9: eaan8081.

Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. *Nature*. 513: 569–573.

Anzalone AV, Gao XD, Podracy CJ, Nelson AT, Koblan LW, et al. 2022. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. *Nat Biotechnol*. 40: 731–740.

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. *Nature*. 576: 149–157.

Aschauer DF, Kreuz S, Rumpel S. 2013. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. *PLoS One*. 8: e76319.

Atkinson H, Chalmers R. 2010. Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. *Genetica*. 138: 485–498.

Atkinson MA, Roep BO, Posgai A, Wheeler DC, Peakman M. 2019. The challenge of modulating β-cell autoimmunity in type 1 diabetes. *Lancet Diabetes Endocrinol*. 7: 52–64.

Azhar M, Phutela R, Kumar M, Ansari AH, Rauthan R, et al. 2021. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. *Biosens Bioelectron*. 183: 113207.

Bak RO, Dever DP, Reinisch A, Cruz Hernandez D, Majeti R, et al. 2017. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. *Elife*. 6: e27873.

Banno S, Nishida K, Arazoe T, Mitsunobu H, Kondo A. 2018. Deaminase-mediated multiplex genome editing in *Escherichia coli*. *Nat Microbiol*. 3: 423–429.

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. *Science*. 315: 1709–1712.

Beam Therapeutics. 2022. BEACON: a study evaluating the safety and efficacy of BEAM-101 in patients with severe sickle cell disease (BEACON), NCT 05456880. <https://clinicaltrials.gov/study/NCT05456880>.

Behbodikhan J, Ahmed S, Elyasi A, Kasselman LJ, De Leon J, et al. 2021. Apolipoprotein B and cardiovascular disease: biomarker and potential therapeutic target. *Metabolites*. 11: 690.

Bioray Laboratories. 2020. Safety and efficacy evaluation of γ-globin reacti-

vated autologous hematopoietic stem cells, NCT04211480. <https://clinicaltrials.gov/study/NCT04211480>.

Bioray Laboratories. 2021. β -globin restored autologous HSC in β -thalassemia major patients, NCT04205435. <https://clinicaltrials.gov/study/NCT04205435>.

Bioray Laboratories. 2022. Safety and efficacy evaluation of BRL-101 in subjects with transfusion-dependent β -thalassemia, NCT05577312. <https://clinicaltrials.gov/study/NCT05577312>.

Bioray Laboratories. 2024. Clinical study of BRL-101 in severe SCD, NCT06300723. <https://clinicaltrials.gov/study/NCT06300723>.

Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, et al. 2008. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. *Hum Gene Ther.* 19: 1359–1368.

Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, et al. 2015. The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. *Hum Mutat.* 36: 395–402.

Blake DJ, Weir A, Newey SE, Davies KE. 2002. Function and genetics of dystrophin and dystrophin-related proteins in muscle. *Physiol Rev.* 82: 291–329.

Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, et al. 2004. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. *Mol Ther.* 10: 671–678.

Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR. 1997. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. *Proc Natl Acad Sci USA.* 94: 1925–1930.

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. *Science.* 326: 1509–1512.

Bressler NM, Bressler SB, Fine SL. 1988. Age-related macular degeneration. *Surv Ophthalmol.* 32: 375–413.

Brooks DL, Whittaker MN, Said H, Dwivedi G, Qu P, et al. 2024. A base editing strategy using mRNA-LNPs for in vivo correction of the most frequent phenylketonuria variant. *HGG Adv.* 5: 100253.

Broomfield J, Hill M, Guglieri M, Crowther M, Abrams K. 2021. Life expectancy in Duchenne muscular dystrophy: reproduced individual patient data meta-analysis. *Neurology.* 97: e2304–e2314.

Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ. 2014. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. *Diabetes Metab Syndr Obes.* 7: 211–223.

Burnight ER, Gupta M, Wiley LA, Anfinson KR, Tran A, et al. 2017. Using CRISPR-Cas9 to generate gene-corrected autologous iPSCs for the treatment of inherited retinal degeneration. *Mol Ther.* 25: 1999–2013.

Cai Y, Cheng T, Yao Y, Li X, Ma Y, et al. 2019. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. *Sci Adv.* 5: eaav3335.

Canatella PJ, Karr JF, Petros JA, Prausnitz MR. 2001. Quantitative study of electroporation-mediated molecular uptake and cell viability. *Biophys J.* 80: 755–764.

Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, et al. 2015. *BCL11A* enhancer dissection by Cas9-mediated in situ saturating mutagenesis. *Nature.* 527: 192–197.

Caribou Biosciences. 2021. CRISPR-edited allogeneic anti-CD19 CAR-T cell therapy for relapsed/refractory B cell non-Hodgkin lymphoma (ANTLER), NCT04637763. <https://clinicaltrials.gov/study/NCT04637763>.

Carnovale C, Bryant G, Shukla R, Bansal V. 2016. Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity. *Prog Mater Sci.* 83: 152–190.

Ceccaldi R, Rondinelli B, D'Andrea AD. 2016. Repair pathway choices and consequences at the double-strand break. *Trends Cell Biol.* 26: 52–64.

Central South University. 2019. TACE combined with *PD-1* knockout engineered T cell in advanced hepatocellular carcinoma, NCT04417764. <https://clinicaltrials.gov/study/NCT04417764>.

Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, et al. 2019. Identification of preexisting adaptive immunity to Cas9 proteins in humans. *Nat Med.* 25: 249–254.

Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, et al. 2015. Highly efficient Cas9-mediated transcriptional programming. *Nat Methods.* 12: 326–328.

Chen Z, Liu F, Chen Y, Liu J, Wang X, et al. 2017. Targeted delivery of CRISPR/Cas9-mediated cancer gene therapy via liposome-templated hydrogel nanoparticles. *Adv Funct Mater.* 27: 1703036.

Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, et al. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. *Science.* 360: 436–439.

Chen S, Sun S, Moonen D, Lee C, Lee AYF, et al. 2019. CRISPR-READI: efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. *Cell Rep.* 27: 3780–3789.

Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, et al. 2020. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. *Nat Nanotechnol.* 15: 313–320.

Chhabra A, Bashirians G, Petropoulos CJ, Wrin T, Paliwal Y, et al. 2024. Global seroprevalence of neutralizing antibodies against adeno-associated virus serotypes used for human gene therapies. *Mol Ther Methods Clin Dev.* 32: 101273.

Chinese PLA General Hospital. 2017. A study evaluating UCART019 in patients with relapsed or refractory CD19+ leukemia and lymphoma, NCT03166878. <https://clinicaltrials.gov/study/NCT03166878>.

Chinese PLA General Hospital. 2018. Study of CRISPR-Cas9 mediated *PD-1* and TCR gene-knocked out mesothelin-directed CAR-T cells in patients with mesothelin positive multiple solid tumors, NCT03545815. <https://clinicaltrials.gov/study/NCT03545815>.

Cho SW, Kim S, Kim Y, Kweon J, Kim HS, et al. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. *Genome Res.* 24: 132–141.

Chockalingam PS, Lin L, Chen G, Minella AC, Chen Y, et al. 2024. Impact of BEAM-101 treatment on red blood cell hemoglobin expression, rheology and sickling properties: initial data from the BEACON phase 1/2 study of autologous CD34⁺ base edited hematopoietic stem cells in sickle cell disease. *Blood.* 144: 4957.

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. *Genetics.* 186: 757–761.

Chu SH, Ortega M, Feliciano P, Winton V, Xu C, et al. 2021. Conversion of Hbs to Hb G-Makassar by adenine base editing is compatible with normal hemoglobin function. *Blood.* 138: 951–952.

Chung JY, Ain QU, Song Y, Yong SB, Kim YH. 2019. Targeted delivery of CRISPR interference system against *Fabp4* to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. *Genome Res.* 29: 1442–1452.

Cochat P, Rumsby G. 2013. Primary hyperoxaluria. *N Engl J Med.* 369: 649–

658.

Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. *Science*. 339: 819–823.

Cox DBT, Gootenberg JS, Abudayeh OO, Franklin B, Kellner MJ, et al. 2017. RNA editing with CRISPR-Cas13. *Science*. 358: 1019–1027.

CRISPR Therapeutics. 2020a. A safety and efficacy study evaluating CTX120 in subjects with relapsed or refractory multiple myeloma, NCT04244656. <https://clinicaltrials.gov/study/NCT04244656>.

CRISPR Therapeutics. 2020b. A safety and efficacy study evaluating CTX130 in subjects with relapsed or refractory T or B cell malignancies (CO-BALT-LYM), NCT04502446. <https://clinicaltrials.gov/study/NCT04502446>.

CRISPR Therapeutics. 2022. An open-label, FIH study evaluating the safety and tolerability of VCTX210A combination product in subjects with T1D, NCT05210530. <https://clinicaltrials.gov/study/NCT05210530>.

CRISPR Therapeutics. 2023a. An open-label, FIH study evaluating the safety, tolerability, and efficacy of VCTX211 combination product in subjects with T1D, NCT05565248. <https://clinicaltrials.gov/study/NCT05565248>.

CRISPR Therapeutics. 2023b. A safety and tolerability study evaluating CTX320 in subjects with elevated lipoprotein(a) and a history of atherosclerotic cardiovascular disease or calcific aortic valve stenosis. ACTRN12623001095651p. <https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12623001095651>.

Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, et al. 2007. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. *Nat Struct Mol Biol*. 14: 413–419.

Cure Rare Disease. 2022. Treatment of a single patient with CRD-TMH-001, NCT05514249. <https://clinicaltrials.gov/study/NCT05514249>.

Cutler JI, Auyeung E, Mirkin CA. 2012. Spherical nucleic acids. *J Am Chem Soc*. 134: 1376–1391.

Dash PK, Kaminski R, Bella R, Su H, Mathews S, et al. 2019. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. *Nat Commun*. 10: 2753.

De Dreuzy E, Heath J, Zuris JA, Sousa P, Viswanathan R, et al. 2019. EDIT-301: an experimental autologous cell therapy comprising Cas12a-RNP modified mPB-CD34⁺ cells for the potential treatment of SCD. *Blood*. 134: 4636.

Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, et al. 2017. Familial hypercholesterolemia. *Nat Rev Dis Primers*. 3: 17093.

den Hollander AJ, Koenekoop RK, Yzer S, Lopez I, Arends ML, et al. 2006. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. *Am J Hum Genet*. 79: 556–561.

Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, et al. 2016. CRISPR/Cas9 beta-globin gene targeting in human hematopoietic stem cells. *Nature*. 539: 384–389.

DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, et al. 2016. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. *Sci Transl Med*. 8: 360ra134.

Dong JY, Fan PD, Frizzell RA. 1996. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. *Hum Gene Ther*. 7: 2101–2112.

Dong W, Kantor B. 2021. Lentiviral vectors for delivery of gene-editing systems based on CRISPR/Cas: current state and perspectives. *Viruses*. 13: 1288.

Dong D, Ren K, Qiu X, Zheng J, Guo M, et al. 2016. The crystal structure of Cpf1 in complex with CRISPR RNA. *Nature*. 532: 522–526.

EdiGene. 2021. A safety and efficacy study evaluating ET-01 in subjects with transfusion dependent β-thalassaemia (ET-01), NCT04925206. <https://clinicaltrials.gov/study/NCT04925206>.

EdiGene. 2023. A study to evaluate the safety and efficacy of ET-01 transplantation in subjects with transfusion dependent β-thalassaemia, NCT05752123. <https://clinicaltrials.gov/study/NCT05752123>.

Editas Medicine. 2019. Single ascending dose study in participants with LCA10, NCT03872479. <https://clinicaltrials.gov/study/NCT03872479>.

Editas Medicine. 2021. A study evaluating the safety and efficacy of EDIT-301 in participants with severe sickle cell disease (RUBY), NCT04853576. <https://clinicaltrials.gov/study/NCT04853576>.

Editas Medicine. 2022. EDIT-301 for autologous hematopoietic stem cell transplant (HSCT) in participants with transfusion-dependent beta thalassemia (TDT), NCT05444894. <https://clinicaltrials.gov/study/NCT05444894>.

Excision BioTherapeutics. 2022. Study of EBT-101 in aviremic HIV-1 infected adults on stable ART, NCT05144386. <https://clinicaltrials.gov/study/NCT05144386>.

Excision BioTherapeutics. 2023. Long-term follow-up study of HIV-1 infected adults who received EBT-101, NCT05143307. <https://clinicaltrials.gov/study/NCT05143307>.

Fajrial AK, He QQ, Wirusanti NI, Slansky JE, Ding X. 2020. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. *Theranostics*. 10: 5532–5549.

Fang R, Yuan P, Yu L, Yang H, Liu J, et al. 2019. Manufacturing scale-up and preclinical development of ET-01, autologous CD34⁺ cells with the BC-L11A erythroid enhancer edited by CRISPR/Cas9, for patients with β-thalassemia major. *Blood*. 134: 965.

Ferris FL, Fine SL, Hyman L. 1984. Age-related macular degeneration and blindness due to neovascular maculopathy. *Arch Ophthalmol*. 102: 1640–1642.

Février M, Dorgham K, Rebollo A. 2011. CD4⁺ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. *Viruses*. 3: 586–612.

First Affiliated Hospital. 2018. A safety and efficacy study of TALEN and CRISPR/Cas9 in the treatment of HPV-related cervical intraepithelial neoplasia I, NCT03057912. <https://clinicaltrials.gov/study/NCT03057912>.

Flotte TR, Cataltepe O, Puri A, Batista AR, Moser R, et al. 2022. AAV gene therapy for Tay-Sachs disease. *Nat Med*. 28: 251–259.

Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. *Nucleic Acids Res*. 42: 2577–2590.

Forget BG. 1998. Molecular basis of hereditary persistence of fetal hemoglobin. *Ann NY Acad Sci*. 850: 38–44.

Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, et al. 2021. CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. *N Engl J Med*. 384: 252–260.

Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, et al. 2019. Programmable inhibition and detection of RNA viruses using Cas13. *Mol Cell*. 76: 826–837.

Fu B, Liao J, Chen S, Li W, Wang Q, et al. 2022. CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric beta(0)/beta(0) transfusion-dependent beta-thalassemia. *Nat Med*. 28: 1573–1580.

Gao X, Huang L. 1996. Potentiation of cationic liposome-mediated gene delivery by polycations. *Biochemistry*. 35: 1027–1036.

Gao N, Zhang C, Hu Z, Li M, Wei J, et al. 2020. Characterization of *Brevibacillus laterosporus* Cas9 (BlatCas9) for mammalian genome editing. *Front*

Cell Dev Biol. 8: 583164.

Gapinske M, Luu A, Winter J, Woods WS, Kostan KA, et al. 2018. CRISPR-SKIP: programmable gene splicing with single base editors. *Genome Biol.* 19: 107.

Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. *Nature.* 468: 67–71.

Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. *Proc Natl Acad Sci USA.* 109: E2579–E2586.

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, et al. 2017. Programmable base editing of A-T to G-C in genomic DNA without DNA cleavage. *Nature.* 551: 464–471.

GenAssist. 2024. A study to evaluate the safety and tolerability of GEN6050X in Duchenne muscular dystrophy. (GEN6050XII), NCT06392724. <https://clinicaltrials.gov/study/NCT06392724>.

Giarrè M, Caldeira S, Malanchi I, Ciccolini F, Leão MJ, et al. 2001. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle arrest. *J Virol.* 75: 4705–4712.

Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. *Cell.* 159: 647–661.

Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. *Cell.* 154: 442–451.

Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, et al. 2013. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. *Nat Biotechnol.* 31: 638–646.

Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, et al. 2021. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. *N Engl J Med.* 385: 493–502.

Glass Z, Lee M, Li Y, Xu Q. 2018. Engineering the delivery system for CRISPR-based genome editing. *Trends Biotechnol.* 36: 173–185.

Glemzaite M, Balciunaite E, Karvelis T, Gasiunas G, Grusyte MM, et al. 2015. Targeted gene editing by transfection of in vitro reconstituted *Streptococcus thermophilus* Cas9 nuclease complex. *RNA Biol.* 12: 1–4.

Guessler AC, Sutherland DE. 2005. Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of June 2004. *Clin Transplant.* 19: 433–455.

Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJ, et al. 2015. The pathogenesis and therapy of muscular dystrophies. *Annu Rev Genomics Hum Genet.* 16: 281–308.

Gupta AO, Sharma A, Frangoul H, Dalal J, Kanter J, et al. 2024. Initial results from the BEACON clinical study: a phase 1/2 study evaluating the safety and efficacy of a single dose of autologous CD34+ base edited hematopoietic stem cells (BEAM-101) in patients with sickle cell disease with severe vaso-occlusive crises. *Blood.* 144: 513.

Hajian R, Balderston S, Tran T, deBoer T, Etienne J, et al. 2019. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. *Nat Biomed Eng.* 3: 427–437.

Halbert CL, Allen JM, Miller AD. 2001. Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. *J Virol.* 75: 6615–6624.

Hangzhou Cancer Hospital. 2017. PD-1 knockout engineered T cells for advanced esophageal cancer, NCT03081715. <https://clinicaltrials.gov/study/NCT03081715>.

Hanna R, Frangoul H, McKinney C, Pineiro L, Mapara M, et al. 2023. AsCas12a gene editing of HBG1/2 promoters with EDIT-301 results in rapid and sustained normalization of hemoglobin and increased fetal hemoglobin in patients with severe sickle cell disease and transfusion-dependent beta-thalassemia. *Blood.* 142: 4996.

Harrison LC, Honeyman MC, Steele CE, Stone NL, Sarugeri E, et al. 2004. Pancreatic β-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. *Diabetes Care.* 27: 2348–2355.

Heyworth PG, Cross AR, Curnutte JT. 2003. Chronic granulomatous disease. *Curr Opin Immunol.* 15: 578–584.

Honegger A, Schilling D, Bastian S, Sponagel J, Kurysh V, et al. 2015. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. *PLoS Pathog.* 11: e1004712.

Hoofnagle JH. 1990. Chronic hepatitis B. *N Engl J Med.* 323: 337–339.

Hou X, Zaks T, Langer R, Dong Y. 2021. Lipid nanoparticles for mRNA delivery. *Nat Rev Mater.* 6: 1078–1094.

Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from *Neisseria meningitidis*. *Proc Natl Acad Sci USA.* 110: 15644–15649.

Hu JH, Miller SM, Geurts MH, Tang W, Chen L, et al. 2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. *Nature.* 556: 57–63.

Huazhong University of Science and Technology. 2021. Safety and efficacy of CT125A cells for treatment of relapsed/refractory CD5+ hematopoietic malignancies, NCT04767308. <https://clinicaltrials.gov/study/NCT04767308>.

HuidaGene Therapeutics. 2023a. CRISPR/Cas13-mediated RNA targeting therapy for the treatment of neovascular age-related macular degeneration (SIGHT-I), NCT06031727. <https://clinicaltrials.gov/study/NCT06031727>.

HuidaGene Therapeutics. 2023b. HuidaGene announces rare pediatric drug designation granted to HG302, a novel CRISPR DNA-editing therapy, for the treatment of Duchenne muscular dystrophy. <https://www.huidagene.com/news/51>.

HuidaGene Therapeutics. 2023c. A study in subjects with otoferlin mutation-related hearing loss using RNA base-editing therapy (SOUND), NCT06025032. <https://clinicaltrials.gov/study/NCT06025032>.

HuidaGene Therapeutics. 2024. An open-label, multidose dose-escalation study to understand the safety of CRISPR gene-editing therapy and its long-lasting effects in DMD patients (MUSCLE), NCT06594094. <https://clinicaltrials.gov/study/NCT06594094>.

HuidaGene Therapeutics. 2025. Open-label dose-escalation study for CRISPR/Cas13 RNA targeting therapy for the treatment of neovascular age-related macular degeneration (BRIGHT), NCT06623279. <https://clinicaltrials.gov/study/NCT06623279>.

Institute of Hematology & Blood Diseases Hospital. 2023a. Safety and efficacy evaluation of autologous CRISPR-Cas12b edited hematopoietic stem cells, NCT06041620. <https://clinicaltrials.gov/study/NCT06041620>.

Institute of Hematology & Blood Diseases Hospital. 2023b. Safety and efficacy evaluation of ET-01 transplantation in subjects with transfusion dependent β-thalassaemia, NCT04390971. <https://clinicaltrials.gov/study/NCT04390971>.

Intellia Therapeutics. 2020. Study to evaluate safety, tolerability, pharmacodynamics, and pharmacokinetics of INL-101 in healthy volunteers. NCT03611501. <https://clinicaltrials.gov/study/NCT03611501>.

kinetics, and pharmacodynamics of NTLA-2001 in patients with hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) and patients with transthyretin amyloidosis-related cardiomyopathy (ATTR-CM), NCT04601051. <https://clinicaltrials.gov/study/NCT04601051>.

Intellia Therapeutics. 2021. NTLA-2002 in adults with hereditary angioedema (HAE) (NTLA-2002), NCT05120830. <https://clinicaltrials.gov/study/NCT05120830>.

Intellia Therapeutics. 2023a. Long-term follow-up (LTFU) of subjects dosed with NTLA-2001. <https://clinicaltrials.gov/study/NCT05697861>.

Intellia Therapeutics. 2023b. MAGNITUDE: A phase 3 study of NTLA-2001 in participants with transthyretin amyloidosis with cardiomyopathy (ATTR-CM), NCT06128629. <https://clinicaltrials.gov/study/NCT06128629>.

Intellia Therapeutics. 2024a. Long-term follow-up (LTFU) of subjects treated with NTLA-2002, NCT06262399. <https://clinicaltrials.gov/study/NCT06262399>.

Intellia Therapeutics. 2024b. A phase 3 study of NTLA-2001 in ATTRv-PN, NCT06672237. <https://clinicaltrials.gov/study/NCT06672237>.

Intellia Therapeutics. 2025. HAELO: A phase 3 study to evaluate NTLA-2002 in participants with hereditary angioedema (HAE), NCT06634420. <https://clinicaltrials.gov/study/NCT06634420>.

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the *iap* gene, responsible for alkaline phosphatase isozyme conversion in *Escherichia coli*, and identification of the gene product. *J Bacteriol*. 169: 5429–5433.

Iwasa YI, Nishio SY, Yoshimura H, Kanda Y, Kumakawa K, et al. 2013. OTOF mutation screening in Japanese severe to profound recessive hearing loss patients. *BMC Med Genet*. 14: 95.

Jacobs J, Deschoolmeester V, Zwaenepoel K, Rolfo C, Silence K, et al. 2015. CD70: An emerging target in cancer immunotherapy. *Pharmacol Ther*. 155: 1–10.

Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, et al. 2013. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. *Sci Transl Med*. 5: 209ra152.

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. *Nat Biotechnol*. 31: 233–239.

Jiang F, Doudna JA. 2017. CRISPR-Cas9 structures and mechanisms. *Annu Rev Biophys*. 46: 505–529.

Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, et al. 2019. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. *Science*. 364: 292–295.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science*. 337: 816–821.

Kamau Therapeutics. 2021. Gene correction in autologous CD34⁺ hematopoietic stem cells (HbS to HbA) to treat severe sickle cell disease (Restore), NCT04819841. <https://clinicaltrials.gov/study/NCT04819841>.

Kang H, Minder P, Park MA, Mesquitta WT, Torbett BE, et al. 2015. CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. *Mol Ther Nucleic Acids*. 4: e268.

Kanter J, DiPersio JF, Leavey P, Shyr DC, Thompson AA, et al. 2021. Cedar trial in progress: a first in human, phase 1/2 study of the correction of a single nucleotide mutation in autologous HSCs (GPH101) to convert HbS to HbA for treating severe SCD. *Blood*. 138: 1864.

Kaplan AP, Joseph K. 2010. The bradykinin-forming cascade and its role in hereditary angioedema. *Ann Allergy Asthma Immunol*. 104: 193–204.

Karpov DS, Sosnovtseva AO, Pylina SV, Bastrich AN, Petrova DA, et al. 2023. Challenges of CRISPR/Cas-based cell therapy for type 1 diabetes: how not to engineer a “Trojan horse”. *Int J Mol Sci*. 24: 17320.

Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, et al. 2015. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. *Genome Biol*. 16: 253.

Kasiewicz LN, Biswas S, Beach A, Ren H, Dutta C, et al. 2023. GalNAc-lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. *Nat Commun*. 14: 2776.

Kato GJ, Piel FB, Reid CD, Gaston MH, Ohene-Frempong K, et al. 2018. Sickle cell disease. *Nat Rev Dis Primers*. 4: 18010.

Kedmi R, Ben-Arie N, Peer D. 2010. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. *Biomaterials*. 31: 6867–6875.

Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. 2019. SHERLOCK: nucleic acid detection with CRISPR nucleases. *Nat Protoc*. 14: 2986–3012.

Kelly JW, Colon W, Lai Z, Lashuel HA, McCulloch J, et al. 1997. Transthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid. *Adv Protein Chem*. 50: 161–181.

Kim YG, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. *Proc Natl Acad Sci USA*. 93: 1156–1160.

Kim JH, Jang HH, Ryoo SM, Kim S, Bae J, et al. 2010. A functionalized gold nanoparticles-assisted universal carrier for antisense DNA. *Chem Commun (Camb)*. 46: 4151–4153.

Kim E, Koo T, Park SW, Kim D, Kim K, et al. 2017. In vivo genome editing with a small Cas9 orthologue derived from *Campylobacter jejuni*. *Nat Commun*. 8: 14500.

Kim DY, Lee JM, Moon SB, Chin HJ, Park S, et al. 2022. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. *Nat Biotechnol*. 40: 94–102.

Kim JH, Yeom JH, Ko JJ, Han MS, Lee K, et al. 2011. Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. *J Biotechnol*. 155: 287–292.

Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. *Nature*. 523: 481–485.

Ko YH. 2015. EBV and human cancer. *Exp Mol Med*. 47: e130.

Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, et al. 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. *Nat Biotechnol*. 36: 843–846.

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. *Nature*. 533: 420–424.

Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, et al. 2017. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. *Sci Adv*. 3: eaao4774.

Konermann S, Lotfy P, Brdeau NJ, Oki J, Shokhirev MN, et al. 2018. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. *Cell*. 173: 665–676.

Kouranova E, Forbes K, Zhao G, Warren J, Bartels A, et al. 2016. CRISPRs for

optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. *Hum Gene Ther.* 27: 464–475.

Krentz H, Auld M, Gill M. 2004. The high cost of medical care for patients who present late (CD4 < 200 cells/µL) with HIV infection. *HIV Med.* 5: 93–98.

Kulkarni A, Tanga S, Karmakar A, Hota A, Maji B. 2023. CRISPR-based precision molecular diagnostics for disease detection and surveillance. *ACS Appl Bio Mater.* 6: 3927–3945.

Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. 2019. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. *Acc Chem Res.* 52: 2435–2444.

Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, et al. 2021. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. *Sci Transl Med.* 13: eabb3945.

Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, et al. 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. *Nat Biotechnol.* 39: 41–46.

Kuscu C, Parlak M, Tufan T, Yang J, Szlachta K, et al. 2017. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. *Nat Methods.* 14: 710–712.

Lai CL, Gane E, Liaw YF, Hsu CW, Thongsawat S, et al. 2007. Telbivudine versus lamivudine in patients with chronic hepatitis B. *N Engl J Med.* 357: 2576–2588.

Latta K, Brodehl J. 1990. Primary hyperoxaluria type I. *Eur J Pediatr.* 149: 518–522.

Lattanzi A, Camarena J, Lahiri P, Segal H, Srifa W, et al. 2021. Development of beta-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. *Sci Transl Med.* 13: eabf2444.

Ledford H. 2020. CRISPR treatment inserted directly into the body for first time. *Nature.* 579: 185.

Lee K, Conboy M, Park HM, Jiang F, Kim HJ, et al. 2017a. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. *Nat Biomed Eng.* 1: 889–901.

Lee CM, Cradick TJ, Bao G. 2016. The *Neisseria meningitidis* CRISPR-Cas9 system enables specific genome editing in mammalian cells. *Mol Ther.* 24: 645–654.

Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, et al. 2018. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. *Nat Biomed Eng.* 2: 497–507.

Lee RG, Mazzola AM, Braun MC, Platt C, Vafai SB, et al. 2023. Efficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models. *Circulation.* 147: 242–253.

Lee R, Mazzola A, Denizio J, Mizoguchi T, Clendaniel V, et al. 2024. An investigational in vivo base editing medicine targeting ANGPTL3, VERVE-201, achieves precise and durable liver editing in nonclinical studies. *Atherosclerosis.* 395: 118496.

Lee B, Park J, Ryu M, Kim S, Joo M, et al. 2017b. Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against *Vibrio vulnificus*. *Sci Rep.* 7: 13572.

Lek A, Wong B, Keeler A, Blackwood M, Ma K, et al. 2023a. Death after high-dose rAAV9 gene therapy in a patient with Duchenne's muscular dystrophy. *N Engl J Med.* 389: 1203–1210.

Lek A, Wong B, Keeler A, Blackwood M, Ma K, et al. 2023b. Unexpected death of a Duchenne muscular dystrophy patient in an N-of-1 trial of rAAV9-delivered CRISPR-transactivator. *MedRxiv.* doi: <https://doi.org/10.1101/2023.05.16.23289881>.

Leonhardt C, Schwake G, Stögbauer TR, Rappl S, Kuhr JT, et al. 2014. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers. *Nanomedicine.* 10: 679–688.

Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, et al. 2020. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. *Nat Biomed Eng.* 4: 97–110.

Li C, Psatha N, Sova P, Gil S, Wang H, et al. 2018. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. *Blood.* 131: 2915–2928.

Li ZF, Wu NQ. 2022. The progression of treatment for refractory hypercholesterolemia: focus on the prospect of gene therapy. *Front Genet.* 13: 911429.

Liaw YF, Gane E, Leung N, Zeuzem S, Wang Y, et al. 2009. 2-year GLOBE trial results: telbivudine is superior to lamivudine in patients with chronic hepatitis B. *Gastroenterology.* 136: 486–495.

Lin Y, Wagner E, Lächelt U. 2022. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. *Biomater Sci.* 10: 1166–1192.

Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, et al. 2016. Calcific aortic stenosis. *Nat Rev Dis Primers.* 2: 16006.

Liu B, Liu J. 2017. Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry. *Anal Methods.* 9: 2633–2643.

Liu L, Pei DS. 2022. Insights gained from RNA editing targeted by the CRISPR-Cas13 family. *Int J Mol Sci.* 23: 11400.

Liu R, Wang L, Xu H, Fang J, Liu S, et al. 2024. Updated safety and efficacy results of RM-001, autologous HBG1/2 promoter-modified CD34⁺ hematopoietic stem and progenitor cells, in treating transfusion-dependent β-thalassemia. *Blood.* 144: 4960.

Liu R, Wang L, Xu H, Yin X, Liang J, et al. 2023. S272: safety and efficacy of RM-001 in patients with transfusion-dependent B-thalassemia: early results from the ongoing of autologous HBG1/2 promoter-modified CD34⁺ hematopoietic stem and progenitor cells. *HemaSphere.* 7: e613965.

Longhurst HJ, Lindsay K, Petersen RS, Fijen LM, Gurugama P, et al. 2024. CRISPR-Cas9 in vivo gene editing of *KLKB1* for hereditary angioedema. *N Engl J Med.* 390: 432–441.

Lowenstein PR, Mandel RJ, Xiong WD, Kroeger K, Castro MG. 2007. Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions. *Curr Gene Ther.* 7: 347–360.

Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, et al. 2019. Development of a gene editing approach to restore vision loss in Leber congenital amaurosis type 10. *Nat Med.* 25: 229–233.

Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. 2013. RNA guided human genome engineering via Cas9. *Science.* 339: 823–826.

Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, et al. 1994. Kruppel associated boxes are potent transcriptional repression domains. *Proc Natl Acad Sci USA.* 91: 4509–4513.

Mark Walters. 2024. Transplantation of Clustered Regularly Interspaced

Short Palindromic Repeats modified hematopoietic progenitor stem cells (CRISPR_SCD001) in patients with severe sickle cell disease, NCT04774536. <https://clinicaltrials.gov/study/NCT04774536>.

Mehl AL, Thomson V. 1998. Newborn hearing screening: the great omission. *Pediatrics*. 101: E4.

Mendell JR, Connolly AM, Lehman KJ, Griffin DA, Khan SZ, et al. 2022. Testing preexisting antibodies prior to AAV gene transfer therapy: rationale, lessons and future considerations. *Mol Ther Methods Clin Dev*. 25: 74–83.

Mendell JR, Shilling C, Leslie ND, Flanigan KM, al Dahhak R, et al. 2012. Evidence based path to newborn screening for Duchenne muscular dystrophy. *Ann Neurol*. 71: 304–313.

Miglisi V, Modamio Hoybjør S, Moreno Pelayo MA, Rodríguez Ballesteros M, Villamar M, et al. 2002. Q829X, a novel mutation in the gene encoding otoferlin (*OTOF*), is frequently found in Spanish patients with prelingual non syndromic hearing loss. *J Med Genet*. 39: 502–506.

Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, et al. 2020. Continuous evolution of SpCas9 variants compatible with non G PAMs. *Nat Biotechnol*. 38: 471–482.

Miller JB, Zhang S, Kos P, Xiong H, Zhou K, et al. 2017. Non viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co delivery of Cas9 mRNA and sgRNA. *Angew Chem Int Ed Engl*. 56: 1059–1063.

Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, et al. 2016. Generation of stem cell derived β cells from patients with type 1 diabetes. *Nat Commun*. 7: 11463.

Myaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, et al. 2016. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome editing. *Sci Rep*. 6: 23549.

Mollanoori H, Rahmati Y, Hassani B, Mehr MH, Teimourian S. 2021. Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy. *Genes Dis*. 8: 146–156.

Moreno AM, Fu X, Zhu J, Katrekar D, Shih YV, et al. 2018. In situ gene therapy via AAV CRISPR Cas9 mediated targeted gene regulation. *Mol Ther*. 26: 1818–1827.

Morrow PK, D’Souza S, Wood T, Gowda V, Lee N, et al. 2023. CTX320: an investigational in vivo CRISPR based therapy efficiently and durably reduces lipoprotein (a) levels in non human primates after a single dose. *Circulation*. 148: A17013.

Muller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, et al. 2016. *Streptococcus thermophilus* CRISPR Cas9 systems enable specific editing of the human genome. *Mol Ther*. 24: 636–644.

Nakamura M, Gao Y, Dominguez AA, Qi LS. 2021. CRISPR technologies for precise epigenome editing. *Nat Cell Biol*. 23: 11–22.

Newby GA, Yen JS, Woodard KJ, Mayuranathan T, Lazzarotto CR, et al. 2021. Base editing of hematopoietic stem cells rescues sickle cell disease in mice. *Nature*. 595: 295–300.

Nihongaki Y, Otabe T, Ueda Y, Sato M. 2019. A split CRISPR-Cpf1 platform for inducible genome editing and gene activation. *Nat Chem Biol*. 15: 882–888.

Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, et al. 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. *Science*. 353: aaf8729.

Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. *Cell*. 156: 935–949.

Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, et al. 2018. Engineered CRISPR Cas9 nuclease with expanded targeting space. *Science*. 361: 1259–1262.

Ooi KH, Liu MM, Tay JWD, Teo SY, Kaewsapsak P, et al. 2021. An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides enable robust and rapid COVID-19 testing. *Nat Commun*. 12: 1739.

Pal A, Kundu R. 2020. Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. *Front Microbiol*. 10: 3116.

Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, et al. 2013. High-throughput profiling of off target DNA cleavage reveals RNA programmed Cas9 nuclease specificity. *Nat Biotechnol*. 31: 839–846.

Pérez-Martínez FC, Guerra J, Posadas I, Ceña V. 2011. Barriers to non viral vector mediated gene delivery in the nervous system. *Pharm Res*. 28: 1843–1858.

Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, et al. 2013. RNA-guided gene activation by CRISPR Cas9 based transcription factors. *Nat Methods*. 10: 973–976.

Philippidis A. 2022. First patient dosed with VCTX210, a cell therapy for type 1 diabetes: ViaCyte and CRISPR Therapeutics are evaluating an immune evasive cell replacement therapy that they developed to help patients produce their own insulin. *Genet Eng Biotechnol News*. 42: 10–11.

Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, et al. 2013. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model based map and population estimates. *Lancet*. 381: 142–151.

Piel FB, Steinberg MH, Rees DC. 2017. Sickle cell disease. *N Engl J Med*. 376: 1561–1573.

Pierce EA, Aleman TS, Jayasundera KT, Ashimatey BS, Kim K, et al. 2024. Gene editing for CEP290-associated retinal degeneration. *N Engl J Med*. 390: 1972–1984.

Prausnitz MR. 1999. A practical assessment of transdermal drug delivery by skin electroporation. *Adv Drug Deliv Rev*. 35: 61–76.

Prime Medicine. 2024. A study of the safety and efficacy of Prime Editing (PM359) in participants with p47^{phox} autosomal recessive chronic granulomatous disease (CGD), NCT06559176. <https://clinicaltrials.gov/study/NCT06559176?term=NCT06559176&rank=1>.

Prime Medicine. 2025. Prime Medicine announces breakthrough clinical data showing rapid restoration of DHR positivity after single infusion of PM359, an investigational prime editor for chronic granulomatous disease. <https://investors.primemedicine.com/news-releases/news-release-details/prime-medicine-announces-breakthrough-clinical-data-showing>.

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, et al. 2013. Repurposing CRISPR as an RNA guided platform for sequence specific control of gene expression. *Cell*. 152: 1173–1183.

Quan J, Langelier C, Kuchta A, Batson J, Teyssier N, et al. 2019. FLASH: a next generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. *Nucleic Acids Res*. 47: e83.

Rajamannan NM, Evans FJ, Aikawa E, Grande Allen KJ, Demer LL, et al. 2011. Calcific aortic valve disease: not simply a degenerative process a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. *Circulation*. 124: 1783.

Ran FA, Cong LX, Yan WX, Scott DA, Gootenberg JS, et al. 2015. In vivo genome editing using *Staphylococcus aureus* Cas9. *Nature*. 520: 186–191.

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, et al. 2013. Genome engi-

neering using the CRISPR Cas9 system. *Nat Protoc.* 8: 2281–2308.

Ranzani M, Cesana D, Bartholomae CC, Sanvito F, Pala M, et al. 2013. Lentiviral vector based insertional mutagenesis identifies genes associated with liver cancer. *Nat Methods.* 10: 155–161.

Ren J, Liu X, Fang C, Jiang S, June CH, et al. 2017. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. *Clin Cancer Res.* 23: 2255–2266.

Richman DD. 2000. The impact of drug resistance on the effectiveness of chemotherapy for chronic hepatitis B. *Hepatology.* 32: 866–867.

Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, et al. 2020. Phage assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. *Nat Biotechnol.* 38: 883–891.

Rossidis AC, Stratigis JD, Chadwick AC, Hartman HA, Ahn NJ, et al. 2018. In utero CRISPR mediated therapeutic editing of metabolic genes. *Nat Med.* 24: 1513–1518.

Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, et al. 2017. CRISPR/Cas9 mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. *Mol Ther.* 25: 331–341.

Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS. 2019. Transthyretin amyloid cardiomyopathy: JACC state of the art review. *J Am Coll Cardiol.* 73: 2872–2891.

Ruelas DS, Greene WC. 2013. An integrated overview of HIV 1 latency. *Cell.* 155: 519–529.

Ryou SM, Kim S, Jang HH, Kim JH, Yeom JH, et al. 2010. Delivery of shRNA using gold nanoparticle-DNA oligonucleotide conjugates as a universal carrier. *Biochem Biophys Res Commun.* 398: 542–546.

Ryou SM, Yeom JH, Kang HJ, Won M, Kim JS, et al. 2014. Gold nanoparticle-DNA aptamer composites as a universal carrier for in vivo delivery of biologically functional proteins. *J Control Release.* 196: 287–294.

Ryu SM, Koo T, Kim K, Lim K, Baek G, et al. 2018. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. *Nat Biotechnol.* 36: 536–536.

Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T. 2014. Multiplex genome engineering in human cells using all in one CRISPR/Cas9 vector system. *Sci Rep.* 4: 5400.

Salvagnin U, Unkel K, Sprink T, Bundoock P, Sevenier R, et al. 2023. A comparison of three different delivery methods for achieving CRISPR/Cas9 mediated genome editing in *Cichorium intybus* L. *Front Plant Sci.* 14: 1111110.

Sander JD, Joung JK. 2014. CRISPR Cas systems for editing, regulating and targeting genomes. *Nat Biotechnol.* 32: 347–355.

Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. 1993. The HPV 16 E6 and E6 AP complex functions as a ubiquitin protein ligase in the ubiquitination of p53. *Cell.* 75: 495–505.

Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. *Cell.* 63: 1129–1136.

Schuh RS, Poletto É, Pasqualim G, Tavares AMV, Meyer FS, et al. 2018. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. *J Control Release.* 288: 23–33.

Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, et al. 2015. Generation of knock in primary human T cells using Cas9 ribonucleoproteins. *Proc Natl Acad Sci USA.* 112: 10437–10442.

Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, et al. 2013. Functional repair of *CFTR* by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. *Cell Stem Cell.* 13: 653–658.

Seger RA. 2010. Chronic granulomatous disease: recent advances in pathophysiology and treatment. *Neth J Med.* 68: 334–340.

Senís E, Fatouros C, Große S, Wiedtke E, Niopék D, et al. 2014. CRISPR/Cas9 mediated genome engineering: an adeno associated viral (AAV) vector toolbox. *Biotechnol J.* 9: 1402–1412.

Shah N, Chari A, Scott E, Mezzi K, Usmani SZ. 2020. B cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. *Leukemia.* 34: 985–1005.

Shahbazi R, Sghia Hughes G, Reid JL, Kubek S, Haworth KG, et al. 2019. Targeted homology directed repair in blood stem and progenitor cells with CRISPR nanoformulations. *Nat Mater.* 18: 1124–1132.

She K, Liu Y, Zhao Q, Jin X, Yang Y, et al. 2023. Dual AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. *Signal Transduct Target Ther.* 8: 57.

Shen B, Zhang J, Wu H, Wang J, Ma K, et al. 2013. Generation of gene modified mice via Cas9/RNA mediated gene targeting. *Cell Res.* 23: 720–723.

Shi J, Fang R, Gao Z, Shi Z, Kuang Z, et al. 2022. Preliminary safety and efficacy results of edi001: an investigator initiated trial on CRISPR/Cas9 modified autologous CD34⁺ hematopoietic stem and progenitor cells for patients with transfusion dependent β thalassemia. *Blood.* 140: 10652–10653.

Shi K, Xie S, Tian R, Wang S, Lu Q, et al. 2021. A CRISPR Cas autocatalysis driven feedback amplification network for supersensitive DNA diagnostics. *Sci Adv.* 7: eabc7802.

Shi L, Wang S, Wu W, Wang X, Yang Q, et al. 2023. Development of an RNA targeting based gene therapy product for neovascular age related macular degeneration (nAMD). *Invest Ophthalmol Vis Sci.* 64: 934.

Shi L, Wu W, Yang Q, He S, Zhu M, et al. 2024. Efficient in vitro and in vivo CRISPR RNA targeting therapy of HG202 for macular degeneration. *Invest Ophthalmol Vis Sci.* 65: 6517.

Shojaeian A, Mehri-Ghahfarokhi A. 2018. An overview of the epidemiology of type 1 diabetes mellitus. *Int J Metab Syndr.* 2: 1–4.

Shukla R, Bansal V, Chaudhary M, Basu A, Bhowmik A, et al. 2005. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. *Langmuir.* 21: 10644–10654.

Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, et al. 2003. Long term follow up studies confirm the stability of the latent reservoir for HIV 1 in resting CD4⁺ T cells. *Nat Med.* 9: 727–728.

Slattery SS, Diamond A, Wang H, Therrien JA, Lant JT, et al. 2018. An expanded plasmid based genetic toolbox enables Cas9 genome editing and stable maintenance of synthetic pathways in *Phaeodactylum tricornutum*. *ACS Synth Biol.* 7: 328–338.

Sluch V, Swain D, Whipple W, Liao M, Bhowmik A, et al. 2019. CRISPR-editing of hESCs allows for production of immune evasive cells capable of differentiation to pancreatic progenitors for future type 1 diabetes therapy. *Diabetologia.* 62: 6–7.

Stella S, Alcon P, Montoya G. 2017. Structure of the Cpf1 endonuclease R loop complex after target DNA cleavage. *Nature.* 546: 559–563.

Stone EM. 2007. Leber congenital amaurosis: a model for efficient genetic testing of heterogeneous disorders. LXIV Edward Jackson Memorial Lecture. *Am J Ophthalmol.* 144: 791–811.

Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. 1998. One pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. *J Am Chem Soc.* 120: 1959–1964.

Swaminathan G, Thoryk EA, Cox KS, Smith JS, Wolf JJ, et al. 2016. A tetravalent sub unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non human primates. *Sci Rep.* 6: 34215.

Taher AT, Musallam KM, Cappellini MD. 2021. Beta thalassemias. *N Engl J Med.* 384: 727–743.

Tang T, Han Y, Wang Y, Huang H, Qian P. 2021. Programmable system of Cas13 mediated RNA modification and its biological and biomedical applications. *Front Cell Dev Biol.* 9: 677587.

Thakore PI, Kwon JB, Nelson CE, Rouse DC, Gemberling MP, et al. 2018. RNA guided transcriptional silencing in vivo with *S. aureus* CRISPR Cas9 repressors. *Nat Commun.* 9: 1674.

The First Affiliated Hospital of Guangxi Medical University. 2021. CD34 positive cells edited by autologous CRISPR Cas9 (RM 001) treatment of transfusion dependent β thalassemia safety and effectiveness exploration, ChiCTR2100053406 <https://www.chictr.org.cn/showprojEN.html?proj=136638>.

The 923rd Hospital of the People's Liberation Army. 2021. Safety and efficacy evaluation of RM 001 for the treatment of transfusions dependent β thalassemia major, ChiCTR2100052858 <https://www.chictr.org.cn/showprojEN.html?proj=135649>.

Tong H, Huang J, Xiao Q, He B, Dong X, et al. 2023. High fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. *Nat Biotechnol.* 41: 108–119.

Truong DJ, Kühner K, Kühn R, Werfel S, Engelhardt S, et al. 2015. Development of an intein mediated split-Cas9 system for gene therapy. *Nucleic Acids Res.* 43: 6450–6458.

Tsang SH, Sharma T. 2018. Leber congenital amaurosis. *Adv Exp Med Biol.* 1085: 131–137.

Tsang TY. 1991. Electroporation of cell membranes. *Biophys J.* 60: 297–306.

Tsukamoto T, Sakai E, Iizuka S, Taracena Gándara M, Sakurai F, et al. 2018. Generation of the adenovirus vector mediated CRISPR/Cpf1 system and the application for primary human hepatocytes prepared from humanized mice with chimeric liver. *Biol Pharm Bull.* 41: 1089–1095.

Tune Therapeutics. 2024a. AASLD 2024: Tune Therapeutics shows near complete HepB repression with Tune 401 epigenetic silencer. <https://tunetx.com/aasd-2024-tune-therapeutics-shows-near-complete-hepb-repression-with-tune-401-epigenetic-silencer/>.

Tune Therapeutics. 2024b. Phase 1b, open label study of Tune 401 to assess safety, PK and PD in adults with chronic hepatitis B, NCT06671093. <https://clinicaltrials.gov/study/NCT06671093>.

Uchida E, Mizuguchi H, Ishii Watabe A, Hayakawa T. 2002. Comparison of the efficiency and safety of non viral vector mediated gene transfer into a wide range of human cells. *Biol Pharm Bull.* 25: 891–897.

Uddin MN, Roni MA. 2021. Challenges of storage and stability of mRNA based COVID 19 vaccines. *Vaccines.* 9: 1033.

Vafai S, Karsten V, Jensen C, Falzone R, Lister T, et al. 2024. Abstract 4139206: design of Heart 2: a phase 1b clinical trial of VERVE 102, an *in vivo* base editing medicine delivered by a GalNAc LNP and targeting PCSK9 to durably lower LDL cholesterol. *Circulation.* 150: A4139206.

Valkama AJ, Oruetebarria I, Lipponen EM, Leinonen HM, Käyhty P, et al. 2020. Development of large scale downstream processing for lentiviral vectors. *Mol Ther Methods Clin Dev.* 17: 717–730.

VandenDriessche T, Thorrez L, Acosta Sanchez A, Petrus I, Wang L, et al. 2007. Efficacy and safety of adeno associated viral vectors based on serotype 8 and 9 vs lentiviral vectors for hemophilia B gene therapy. *J Thromb Haemostasis.* 5: 16–24.

Vaughan EE, Dean DA. 2006. Intracellular trafficking of plasmids during transfection is mediated by microtubules. *Mol Ther.* 13: 422–428.

Verdera HC, Kuranda K, Mingozi F. 2020. AAV vector immunogenicity in humans: a long journey to successful gene transfer. *Mol Ther.* 28: 723–746.

Vertex Pharmaceuticals. 2018a. A Safety and Efficacy Study Evaluating CTX001 in Participants With Transfusion-Dependent β-Thalassemia, NCT03655678. <https://clinicaltrials.gov/study/NCT03655678>.

Vertex Pharmaceuticals. 2018b. A Safety and Efficacy Study Evaluating CTX001 in Subjects With Severe Sickle Cell Disease, NCT03745287. <https://clinicaltrials.gov/study/NCT03745287>.

Vertex Pharmaceuticals. 2022a. Evaluation of Safety and Efficacy of CTX001 in Pediatric Participants With Severe Sickle Cell Disease (SCD), NCT05329649. <https://clinicaltrials.gov/study/NCT05329649>.

Vertex Pharmaceuticals. 2022b. Evaluation of Safety and Efficacy of CTX001 in Pediatric Participants With Transfusion-Dependent β-Thalassemia (TDT), NCT05356195. <https://clinicaltrials.gov/study/NCT05356195>.

Vertex Pharmaceuticals. 2024. Evaluation of efficacy and safety of a single dose of exa cel in participants with severe sickle cell disease, βS/βC genotype, NCT05951205. <https://clinicaltrials.gov/study/NCT05951205>.

Verve Therapeutics. 2022. A study of VERVE 101 in patients with familial hypercholesterolemia and cardiovascular disease, NCT05398029. <https://clinicaltrials.gov/study/NCT05398029>.

Verve Therapeutics. 2024a. Phase 1b study of VERVE 201 in patients with refractory hyperlipidemia, NCT06451770. <https://clinicaltrials.gov/study/NCT06451770>.

Verve Therapeutics. 2024b. A study of VERVE 102 in patients with familial hypercholesterolemia or premature coronary artery disease, NCT06164730. <https://clinicaltrials.gov/study/NCT06164730>.

Walsh MP, Chintakuntlawar A, Robinson CM, Madisch I, Harrach B, et al. 2009. Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. *PLoS One.* 4: e5635.

Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. 2020. Unconstrained genome targeting with near PAMless engineered CRISPR Cas9 variants. *Science.* 368: 290–296.

Wan P, Tang S, Lin D, Lu Y, Long M, et al. 2025. Base editing gene therapy for heterozygous familial hypercholesterolemia. *medRxiv.* doi: <https://doi.org/10.1101/2025.04.17.25325983>.

Wang X, Xiong E, Tian T, Cheng M, Lin W, et al. 2020a. Clustered regularly interspaced short palindromic repeats/Cas9 mediated lateral flow nucleic acid assay. *ACS Nano.* 14: 2497–2508.

Wang L, Xu H, Liang J, Li Y, Shi L, et al. 2022. P1465: initial safety and efficacy study of RM 001, autologous HBG1/2 promoter modified CD34+ hematopoietic stem and progenitor cells, in transfusion dependent β-thalassemia. *Hemisphere.* 6: 1347–1348.

Wang K, Xu J, Zhang T, Xue D. 2016. Tumor infiltrating lymphocytes in breast cancer predict the response to chemotherapy and survival outcome: a meta analysis. *Oncotarget.* 7: 44288–44298.

Wang D, Zhang F, Gao G. 2020b. CRISPR based therapeutic genome editing: strategies and *in vivo* delivery by AAV vectors. *Cell.* 181: 136–150.

Weaver JC, Vanbever R, Vaughan TE, Prausnitz MR. 1997. Heparin alters transdermal transport associated with electroporation. *Biochem Biophys Res Commun.* 234: 637–640.

Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. 2020. Systemic nanoparticle

delivery of CRISPR Cas9 ribonucleoproteins for effective tissue specific genome editing. *Nat Commun.* 11: 3232.

Williams EL, Acquaviva C, Amoroso A, Chevalier F, Coulter Mackie M, et al. 2009. Primary hyperoxaluria type 1: update and additional mutation analysis of the *AGXT* gene. *Hum Mutat.* 30: 910–917.

World Health Organization. 2021. Human genome editing: recommendations. <https://www.who.int/publications/item/9789240030381>.

Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, et al. 2019. Highly efficient therapeutic gene editing of human hematopoietic stem cells. *Nat Med.* 25: 776–783.

Xijing Hospital. 2019. CRISPR (HPK1) edited CD19 specific CART cells (XYF19 CART cells) for CD19+ leukemia or lymphoma, NCT04037566. <https://clinicaltrials.gov/study/NCT04037566>.

Xu L, Park KH, Zhao L, Xu J, El Refaey M, et al. 2016. CRISPR mediated genome editing restores dystrophin expression and function in *mdx* mice. *Mol Ther.* 24: 564–569.

Xu L, Wang J, Liu Y, Xie L, Su B, et al. 2019. CRISPR edited stem cells in a patient with HIV and acute lymphocytic leukemia. *N Engl J Med.* 381: 1240–1247.

Xue Y, Tao Y, Wang X, Wang X, Shu Y, et al. 2023. RNA base editing therapy cures hearing loss induced by *OTOF* gene mutation. *Mol Ther.* 31: 3520–3530.

Yang Y. 2017. PD 1 knockout EBV CTLs for advanced stage Epstein Barr virus (EBV) associated malignancies, NCT03044743. <https://clinicaltrials.gov/study/NCT03044743>.

Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A, et al. 2013a. Optimization of scarless human stem cell genome editing. *Nucleic Acids Res.* 41: 9049–9061.

Yang Y, Wang L, Bell P, McMenamin D, He Z, et al. 2016. A dual AAV system enables the Cas9 mediated correction of a metabolic liver disease in newborn mice. *Nat Biotechnol.* 34: 334–338.

Yang LZ, Wang Y, Li SQ, Yao RW, Luan PF, et al. 2019. Dynamic imaging of RNA in living cells by CRISPR Cas13 systems. *Mol Cell.* 76: 981–997.

Yang T, Wei X, Chai Y, Li L, Wu H. 2013b. Genetic etiology study of the non syndromic deafness in Chinese Hans by targeted next generation sequencing. *Orphanet J Rare Dis.* 8: 85.

Yeom JH, Lee B, Kim D, Lee JK, Kim S, et al. 2016. Gold nanoparticle DNA aptamer conjugate assisted delivery of antimicrobial peptide effectively eliminates intracellular *Salmonella enterica* serovar Typhimurium. *Biomaterials.* 104: 43–51.

Yeom JH, Ryou SM, Won M, Park M, Bae J, et al. 2013. Inhibition of xenograft tumor growth by gold nanoparticle DNA oligonucleotide conjugates assisted delivery of BAX mRNA. *PLoS One.* 8: e75369.

Yeom JH, Shin E, Jin H, Liu H, Luo Y, et al. 2023. Aptamer conjugated gold nanoparticles platform as the intracellular delivery of antibodies for cancer therapy. *J Ind Eng Chem.* 126: 480–491.

Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, et al. 2016. Therapeutic genome editing by combined viral and non viral delivery of CRISPR system components in vivo. *Nat Biotechnol.* 34: 328–333.

YoTech Therapeutics. 2024a. Clinical exploration study of YOLT 203 in the treatment of type 1 primary hyperoxaluria (PH1), NCT06511349. <https://clinicaltrials.gov/study/NCT06511349>.

YoTech Therapeutics. 2024b. Clinical exploration trial of YOLT 101 in the treatment of familial hypercholesterolemia (FH), NCT06461702. <https://clinicaltrials.gov/study/NCT06461702>.

Yoshida M, Yokota E, Sakuma T, Yamatsuji T, Takigawa N, et al. 2018. Development of an integrated CRISPRi targeting Δ Np63 for treatment of squamous cell carcinoma. *Oncotarget.* 9: 29220–29232.

Yu X, Liang X, Xie H, Kumar S, Ravinder N, et al. 2016. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. *Biotechnol Lett.* 38: 919–929.

Yuan J, Ma Y, Huang T, Chen Y, Peng Y, et al. 2018. Genetic modulation of RNA splicing with a CRISPR guided cytidine deaminase. *Mol Cell.* 72: 380–394.

Zetsche B, Gootenberg JS, Abudayeh OO, Slaymaker IM, Makarova KS, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell.* 163: 759–771.

Zhang H, Kong X, Xue M, Hu J, Wang Z, et al. 2022a. An engineered xCas12i with high activity, high specificity, and broad PAM range. *Protein Cell.* 14: 540–545.

Zhang X, Lv S, Luo Z, Hu Y, Peng X, et al. 2021. MiniCAFE, a CRISPR/Cas9-based compact and potent transcriptional activator, elicits gene expression invivo. *Nucleic Acids Res.* 49: 4171–4185.

Zhang H, Rombouts K, Raes L, Xiong R, De Smedt SC, et al. 2020. Fluorescence-based quantification of messenger RNA and plasmid DNA decay kinetics in extracellular biological fluids and cell extracts. *Adv Biosyst.* 4: 2000057.

Zhang N, Si J, Li G, Wang Y, Long F, et al. 2022b. P1464Decreasing HPK1 expression in CD19 CART cells: a novel strategy to overcome challenges of cell therapy for adult (r/r) B ALL. *Hemaspere.* 23: 1346–1347.

Zhang L, Wang P, Feng Q, Wang N, Chen Z, et al. 2017. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. *NPG Asia Mater.* 9: e441.

Zhao D, Li J, Li S, Xin X, Hu M, et al. 2021. Glycosylase base editors enable C to A and C to G base changes. *Nat Biotechnol.* 39: 35–40.

Zhao Z, Shi L, Zhang W, Han J, Zhang S, et al. 2018. CRISPR knock out of programmed cell death protein 1 enhances anti tumor activity of cytotoxic T lymphocytes. *Oncotarget.* 9: 5208.

Zheng B, Liu R, Zhang X, Fu B, Xu Y, et al. 2023. Efficacy and safety of BRL 101, CRISPR Cas9 mediated gene editing of the *BCL11A* enhancer in transfusion dependent β thalassemia. *Blood.* 142: 4995–4996.

Zhu J, Huang X, Yang Y. 2007. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. *J Virol.* 81: 3170–3180.

Zoulim F, Locarnini S. 2009. Hepatitis B virus resistance to nucleos(t)ide analogues. *Gastroenterology.* 137: 1593–1608.

Zuo E, Sun Y, Wei W, Yuan T, Ying W, et al. 2019. Cytosine base editor generates substantial off target single nucleotide variants in mouse embryos. *Science.* 364: 289–292.

Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, et al. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. *Nat Biotechnol.* 33: 73–80.