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CRISPR-Cas technologies have emerged as powerful and versatile tools in gene therapy. In
addition to the widely used SpCas9 system, alternative platforms including modified amino
acid sequences, size-optimized variants, and other Cas enzymes from diverse bacterial spe-
cies have been developed to apply this technology in various genetic contexts. In addition,
base editors and prime editors for precise gene editing, the Cas13 system targeting RNA,
and CRISPRa/i systems have enabled diverse and adaptable approaches for genome and
RNA editing, as well as for regulating gene expression. Typically, CRISPR-Cas components are
transported to the target in the form of DNA, RNA, or ribonucleoprotein complexes using
various delivery methods, such as electroporation, adeno-associated viruses, and lipid
nanoparticles. To amplify therapeutic efficiency, continued developments in targeted deliv-
ery technologies are required, with increased safety and stability of therapeutic biomole-
cules. CRISPR-based therapeutics hold an inexhaustible potential for the treatment of many
diseases, including rare congenital diseases, by making permanent corrections at the ge-
nomic DNA level. In this review, we present various CRISPR-based tools, their delivery sys-
tems, and clinical progress in the CRISPR-Cas technology, highlighting its innovative pros-
pects for gene therapy.

Keywords: CRISPR-Cas system, genetic engineering, clinical trial, delivery system, gene
therapy

capable of manipulating the genomic sequences of cells and organisms,
by enabling precise, locus-specific genome editing, they allow permanent

The discovery of clustered regularly interspaced short palindromic re-
peats (CRISPR) in 1987 (Ishino et al., 1987) led to the identification of the
CRISPR and CRISPR-associated protein (Cas) system as a defense mecha-
nism in prokaryotes against phages (Barrangou et al., 2007; Garneau et al.,
2010). In 2013, a pioneering study introduced the use of CRISPR-Cas9 for
gene editing in prokaryotes (Jiang et al., 2013), and the same year, it was
successfully used to edit the genome of eukaryotic cells (Cong et al.,
2013).

CRISPR-Cas systems offer a range of features that support their thera-
peutic potential. The CRISPR-Cas system provides a simple and efficient
gene editing process, enabling simultaneous targeting of multiple genes.
In contrast to zinc-finger nucleases (ZFNs) (Kim et al., 1996) and transcrip-
tion activator-like effector nucleases (TALENSs) (Boch et al., 2009; Christian
et al,, 2010), CRISPR-Cas9 does not require a complex protein design for
each target (Jinek et al., 2012; Ran et al., 2013). Moreover, this system is
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correction of disease-causing mutations, in contrast to conventional
drugs that often require lifelong administration and offer only transient
effects. Additionally, CRISPR-Cas platforms are highly versatile, adaptable
for gene disruption, correction, or epigenetic modulation. Their modulari-
ty and relative ease of design also facilitate rapid development across
both ex vivo and in vivo therapeutic contexts, as well as introducing pre-
cise epigenetic and transcriptional modifications (Nakamura et al., 2021;
Nishida et al., 2016).

Cas Nuclease-Mediated Genome Editing

The CRISPR-Cas9 system is a highly effective genome editing tool that
utilizes the endonuclease protein Cas9 and a guide RNA (gRNA) (Ran et
al., 2013). The gRNA can be formed either as a duplex of CRISPR RNA (crR-
NA) and trans-activating CRISPR RNA (tracrRNA), or as a combined ver-
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sion, the single-guide RNA (sgRNA). The spacer region of the crRNA or 5-
end of the sgRNA forms complementary base pairing with the target se-
quence and guides Cas9 to it (Jinek et al., 2012). The specificity of target
recognition and cleavage is ensured by the presence of the protospacer
adjacent motif (PAM) (Anders et al., 2014). Upon target recognition and
binding, the nuclease domains of Cas9, HNH and RuvC (Gasiunas et al.,
2012), induce a double-strand break (DSB) by cleaving the target and
nontarget DNA strands, respectively (Nishimasu et al,, 2014) (Fig. TA).

The DSB can be repaired via two pathways: non-homologous end join-
ing (NHEJ) or homology-directed repair (HDR) (Ceccaldi et al., 2016; Sand-
er and Joung, 2014). The NHEJ pathway often generates insertions or de-
letions (indels) that may cause frameshift mutations and premature stop
codons, which can be used to reduce the expression of genes associated
with various diseases (Frangoul et al., 2021; Gillmore et al., 2021). HDR is
less frequent than NHEJ and requires the presence of donor DNA, but it
can accurately introduce desired knock-in sequences at the target locus
(Miyaoka et al,, 2016; Yang et al., 2013a). Accordingly, clinical trials are cur-
rently investigating the application of HDR to correct disease-causing mu-
tations through precise gene deletions or inversions (Kanter et al., 2021;

Mark Walters, 2024).

The most well-studied and widely used Cas nuclease in type Il CRISPR
systems is SpCas9, which originated from Streptococcus pyogenes (Jiang
and Doudna, 2017; Mali et al,, 2013). Although it can accurately recognize
PAM sequences and process its target DNA, its utility is limited to target-
ing DNAs with 5-NGG-3' PAM sequences (Jiang et al., 2013; Jinek et al.,
2012). To address this inherent limitation, various Cas9 mutants that tar-
get altered PAM sequences by modifying the PAM-interacting (PI) domain
have been developed. For instance, the Pl domain of SpCas9 was modi-
fied to create variants that recognize the 5-NGAN-3’, 5-NGNG-3’, and 5-
NGCG-3' PAM (Kleinstiver et al., 2015). Furthermore, an extended PAM
variant, xCas9 has been developed to recognize multiple PAM sequences
(5-NG-3', 5-GAA-3’, 5-GAT-3’, etc.) (Hu et al,, 2018). Other SpCas9 variants
have also been characterized; including a variant that recognizes a less re-
strictive 5-NG-3' PAM sequence (Nishimasu et al.,, 2018), as well as variants
for non-G PAMs, such as 5-NRRH-3’, 5-NRCH-3’, and 5-NRTH-3’ PAMs
(Miller et al., 2020). Various Cas9 orthologs from diverse bacterial species
that have different PAM specificities can also be used. These include Sa-
Cas9 (5-NNGRRT-3’, R = A or G) (Kleinstiver et al., 2015; Ran et al., 2015),
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Fig. 1. Diversity of CRISPR-based tools. Schematic diagrams of CRISPR-based tools and their mechanisms of action. (A) SpCas9 and Cas12a
(Cpf1) nucleases generate DSB at target DNA sites guided by gRNAs, leading to indels via NHEJ or HDR pathways. (B) Cas13 cleaves target
RNA in a crRNA-guided manner. (C) The base editing system utilizes deaminase enzyme fused to nCas9 to induce precise base substitutions
without introducing DSBs. (D) The prime editing system employs nCas9 fused to a reverse transcriptase, guided by a pegRNA which also
serves as template for targeted DNA synthesis. (E) The CRISPR activation/interference system involves dCas9 fused to transcription activator
or repressor to epigenetically modulate gene expression without altering DNA sequences.
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StCas9 (5-NNAGAAW-3", W = A orT) (Glemzaite et al., 2015; Muller et al,,
2016), NmCas9 (5-NNNNGMTT-3,M = Aor C) (Hou et al., 2013; Lee et al,,
2016), CjCas9 (5-NNNNRYAC-3'Y = CorT) (Fonfara et al,, 2014; Kim et al,,
2017), and BlatCas9 (5-NNNNCNAA-3) (Gao et al., 2020; Karvelis et al.,
2015).

Cpf1 (also known as Cas12a) has also been studied for its relative ad-
vantages, including high editing efficiency, small protein size, and dual
functionality for both DNA and RNA cleavage. As a type V CRISPR, Cpf1
uses crRNA alone and induces staggered DNA DSBs with 4- or 5-nucleo-
tide (nt)-long 5" overhangs through a single RuvC-like domain (Zetsche et
al., 2015) (Fig. 1A). AsCpf1 and LbCpf1, which can efficiently cleave target
DNA regions with a short adenine-thymine (AT)-rich PAM (5-TTTV-3;V =
A, G, or C) (Dong et al., 2016; Stella et al., 2017; Zetsche et al., 2015), ex-
pand the range of available PAM sequences.

Besides DNA, CRISPR-Cas systems can modify RNA. The CRISPR-Cas13
system, part of the type VI CRISPR system, features a single RNA-guided
Cas13 protein with higher eukaryotes and prokaryotes nucleotide-bind-
ing (HEPN) and ribonuclease domains. This enables it to bind to and spe-
cifically cleave target single-stranded RNA through its ribonuclease activi-
ty (Abudayyeh et al., 2017) (Fig. 1B). The Cas13 family is classified into dif-
ferent subtypes based on the structural characteristics of their crRNA and
the protein components, such as Cas13a (also known as C2¢2), Cas13b,
Cas13c, Cas13d, Cas13X, and Cas13Y (Liu and Pei, 2022). Cas13-based RNA
editing systems have been effectively used for virus detection, splicing
regulation, transcript labeling, and RNA knockdown (Cox et al., 2017; Frei-
je etal,, 2019; Konermann et al., 2018; Yang et al., 2019). Cas13-mediated
RNA therapy offers a key advantage as it avoids irreversible genome mu-
tations, that leads to RNA editing to gain popularity for treating diseases
characterized by temporal changes in cellular states (Abudayyeh et al.,
2019), particularly in the treatment of rare diseases (Cox et al., 2017; Tang
etal, 2021).

For practical applications, the use of these nucleases in repairing intrac-
table pathogenic mutations has been explored (Miller et al., 2020; Nishi-
masu et al.,, 2018). However, Cas variants exhibit notable limitations, in-
cluding reduced efficiency and cleavage activity (Hu et al.,, 2018; Nishima-
su et al, 2018), highlighting the need for further improvements to expand
the application of Cas endonucleases in disease-relevant genome editing.

In addition to therapeutic applications, CRISPR-Cas systems are becom-
ing a valuable tool for molecular diagnostics because of their programma-
bility and high specificity. Certain Cas proteins (e.g., Cas12a, Cas13a) are
used for signal amplification in diagnostic platforms that exploit tar-
get-dependent collateral cleavage activity; other Cas variants are catalyti-
cally inactive (e.g., dCas9), and they can be used to sequence-specific
binding for sensor-based detection. These mechanistic features have led
to the development of a range of diagnostic technologies (Kulkarni et al.,
2023).

Early platforms such as Cas13a-based SHERLOCK (Kellner et al., 2019)
and Cas12a-based DETECTR (Chen et al., 2018) demonstrated high sensi-
tivity in detecting viral and bacterial pathogens. Subsequent innovations
include FLASH-NGS (Quan et al., 2019), which utilizes Cas9 for targeted en-
richment in sequencing applications; CASLFA (Wang et al., 2020a), com-
bining Cas9 with lateral flow assays for rapid field diagnostics; CRISPR-Chip
(Hajian et al., 2019), integrating dCas9 with graphene-based sensors for
amplification-free detection; FELUDA (Azhar et al.,, 2021), employing Fn-
Cas9 for single nucleotide variant identification; VaNGuard (Ooi et al.,
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2021), designed for variant discrimination in SARS-CoV-2 detection; and
CONAN (Shi et al,, 2021), a Cas12a-based autocatalytic system achieving
attomolar sensitivity without preamplification. These advancements high-
light the versatility of CRISPR-Cas technologies in diagnostic applications.

Base Editing

Besides leveraging the original function of the CRISPR-Cas9 system, its
ability to localize proteins to specific target DNA sites via guide RNA has
also been utilized. Variants, such as Cas9 nickase (nCas9) and catalytically
inactive “dead” Cas9 (dCas9) (Qi et al.,, 2013), which were created by intro-
ducing mutations in one or both of the two catalytic domains of Cas9,
have been used in conjunction with other enzymes to direct and mediate
their function at the target site.

Base editors (BEs) are fusion proteins composed of nCas9 or dCas9 with
a deaminase that promotes site-directed mutagenesis by single-base
conversions at specific genomic locations targeted by sgRNA without
generating DSBs (Gaudelli et al.,, 2017; Komor et al., 2016) (Fig. 1C).

Cytosine base editors (CBEs), such as APOBEC, consist of a fusion of ei-
ther nCas9 (D10A) or dCas9 (D10A and H840A) and cytidine deaminase.
An editor directed to a specific genomic locus by sgRNA can convert cyti-
dine to uridine within a limited editing window adjacent to the PAM site.
Subsequently, uridine is converted to thymidine via the base excision re-
pair (BER) mechanism, resulting in a C-to-T transition (or a G-to-A transi-
tion on the complementary strand) (Komor et al., 2016). Adenine base ed-
itors (ABEs) utilize adenosine deaminase, a product of direct evolution of
an Escherichia coli tRNA adenosine deaminase known as TadA. They are
designed to convert adenosine to inosine, which is recognized as guano-
sine by DNA polymerase in the cell, resulting in an A-to-G (or a T-to-C)
substitution (Gaudelli et al., 2017).

Additionally, two representative RNA BE systems were developed by
fusing catalytically inactive Cas13 (dCas13) with the adenosine or cytidine
deaminase domain. The RNA Editing for Programmable A-to-I Replace-
ment (REPAIR) system induces adenosine-to-inosine deamination
through the fusion of ADAR2 adenosine deaminase (Cox et al., 2017). Sim-
ilarly, the RNA Editing for Specific C-to-U Exchange (RESCUE) system en-
ables cytosine-to-uracil deamination by incorporating a directionally
evolved ADAR2 cytidine deaminase (Abudayyeh et al,, 2019).

Further advances have been made to improve the applicability of BEs.
For instance, the Pl domain mutants of nCas9 have been utilized to ex-
pand the target site, the linker region between the Cas variant and deami-
nase has been modified to adjust the editing window, and additional fu-
sion proteins have been incorporated to increase the integrity of base
conversion. Uracil DNA glycosylase inhibitor (UGI) was used to prevent the
transformation of U into an apurinic/apyrimidinic site (Banno et al., 2018).
In another study, bacteriophage Mu-derived Gam proteins were fused to
Cas proteins to minimize the formation of unwanted indels that may be
caused by DSBs during BER, utilizing the ability of Gam to bind to free DSB
ends (Komor et al,, 2017). In addition, new BEs with fewer PAM sequence
constraints (Walton et al.,, 2020), C-to-G conversion capabilities (glycosy-
lase base editors, GBEs) (Kurt et al., 2021; Zhao et al., 2021), and diverse
editing windows (Koblan et al., 2018; Richter et al., 2020) have been de-
veloped.

As a therapeutic strategy, BEs have been applied to correct point muta-
tions, such as pathogenic premature stop codons (Ryu et al., 2018), and to
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induce exon skipping by disrupting splice acceptors (CRISPR-SKIP) (Gapin-
ske et al., 2018). By enabling precise editing to silence pathogenic mutant
alleles or restore protein function, BEs hold a significant potential for man-
aging a broad range of genetic disorders (Kuscu et al., 2017; Rossidis et al.,
2018; Ryu et al., 2018). For instance, sickle cell anemia is caused by an
A-to-T substitution in the B-globin gene (Kato et al., 2018). Other exam-
ples include cystic fibrosis (Amistadi et al., 2023) and phenylketonuria
(Brooks et al., 2024). Although BEs are designed to avoid double-stranded
DNA breaks, they can still lead to unintended indels and mutations. Previ-
ous research has shown that CBEs induce significant off-target single-nu-
cleotide variants (SNVs) in both plant and animal models (Jin et al.,, 2019;
Zuo et al., 2019). Additionally, there are limitations to this technology,
such as in the correction of multi-nucleotide changes or small and large
deletions. To overcome these limitations, new types of genome-editing
tools, such as prime editors, have been developed (Anzalone et al., 2019).

Prime Editing

The prime editor (PE) system is composed of an nCas9 (H840A)-reverse
transcriptase (RT) fusion protein and a prime editing gRNA (pegRNA). PE
does not require donor DNA templates or DSBs to generate insertions (up
to 44 bp), deletions, or point mutations, such as transitions and transver-
sions. Instead, the pegRNA contains a spacer sequence at its 5-end and
an extended 3-end sequence that serves as both a primer binding site
(PBS) and a reverse transcription template (RTT). The pegRNA guides
nCas9 to its target DNA where it introduces a single-stranded break ex-
posing a 3' DNA end. The PBS in the pegRNA anneals to this region to al-
low the RT to begin DNA synthesis using the RTT, which results in a 3'DNA
flap with the intended edit. The newly synthesized flap is resolved by cel-
lular repair mechanisms and integrated into the genome resulting in sta-
ble genome modification (Anzalone et al., 2019). Large genomic deletions
or insertions of up to 110 bp can be generated using a pair of partially
complementary pegRNAs (paired-peg, TWIN-PE) (Anzalone et al., 2022)
(Fig. 1D).

The PE concept holds promise for precise and potentially limitless ge-
nome editing, which can greatly expand its applications in biological and
medical research. However, it faces key shortcomings that require further
optimization. First, the editing efficiency of PEs is lower than that of BEs,
which may limit their therapeutic utility. Furthermore, the large size of the
fusion protein makes it difficult to load onto delivery materials. Thus, the
development of strategies for more efficient delivery is required. There-
fore, these shortcomings must be overcome to realize the full therapeutic
potential of PEs. If prime editing continues to improve, theoretically ap-
proximately 89% of known disease-causing gene mutations can be cor-
rected (Anzalone et al., 2019).

Table 1. Delivery systems for CRISPR/Cas cargos

CRISPRa/i for Transcriptional Regulation

In addition to modifying bases and deleting or integrating DNA se-
quences, the CRISPR-Cas9 system can be used to manipulate gene expres-
sion by combining transcription factors (TFs) and can function as tran-
scriptional repressors (CRISPR interference; CRISPRI) or activators (CRISPR
activation; CRISPRa) (Gilbert et al., 2014) (Fig. 1E). The CRISPRi system uti-
lizes repressor domains, such as the Kriippel-associated box (KRAB) (Mar-
golin et al,, 1994) to create steric hindrance that blocks the binding of TFs
to the promoter region, resulting in decreased gene expression (Gilbert et
al.,, 2013). Conversely, the CRISPRa system integrates activator domains,
such as VP64, Rta, HSF1, and p65, to recruit RNA polymerase or other TFs,
thereby enhancing the expression of downstream genes (Chavez et al.,
2015; Nihongaki et al., 2019). These systems are promising for therapeutic
use because they can function without permanent genomic modifica-
tions. Although these tools have fewer clinical applications, recent in vivo
studies have shown that CRISPRa and CRISPRi approaches are therapeuti-
cally feasible for a variety of disease models (e.g., CRISPRi to repress the Nr/
gene in retinitis pigmentosa model mice to prevent secondary cone loss
[Moreno et al., 2018], downregulating Pcsk9 expression in the mouse liver
to reduce cholesterol serum level [Thakore et al., 2018], silencing Fabp4 in
white adipose tissue of obesity-induced diabetic mouse model for meta-
bolic homeostasis [Chung et al., 2019], suppressing oncogenic ANp63 in
xenograft mouse model to inhibit tumor growth [Yoshida et al., 2018]),
and CRISPRa to activate Fgf21 expression in hepatic tissue to improve
metabolic regulation in adult mice [Zhang et al., 2021]). Therefore, sus-
tained expression of the CRISPRa/i system is required to ensure stable
transcriptional regulation during therapeutic interventions.

CRISPR-Cas Delivery Formats and Tools

The CRISPR-Cas system offers a precise and direct approach to treating
genetic disorders, making it an ideal candidate for therapeutic applica-
tions. For the safe and effective clinical implementation of CRISPR-Cas, the
development of suitable format of cargo and delivery systems for both in
vivo and ex vivo applications is imperative (Table 1).

CRISPR-Cas Cargo Formats

The CRISPR-Cas9 system is available in various formats, including 1) a
plasmid encoding both Cas9 and sgRNA (Sakuma et al., 2014); 2) two sep-
arate plasmids, which encode Cas9 and sgRNA, respectively (Senis et al.,
2014); 3) Cas9 mRNA together with the sgRNA molecule (Miller et al.,
2017); and 4) ribonucleoprotein (RNP) complexes comprising the Cas9
endonuclease protein and the sgRNA molecule (Schumann et al., 2015).
Each format offers different advantages and limitations depending on the

LNP AuNP

Electroporation AAV
CRISPR/Cas Format DNA, mRNA, RNP DNA
Advantage High efficiency, versatility High efficiency, specific tissue
targeting
Disadvantage Cell toxicity, limited Capacity limitations, high
applicability production costs, time-

consuming production

DNA, mRNA, RNP
High efficiency, versatility

RNP

High efficiency, non-toxic,
specific tissue targeting

Limited tissue specificity long-
term safety concerns, dose-
dependent toxicity

Lower efficiency, complex
manufacturing
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specific application and delivery method (Salvagnin et al., 2023; Yin et al,,
2016).

Delivering the CRISPR-Cas system in the plasmid DNA form allows for
sustained expression of Cas and gRNA, which can be advantageous in
cases requiring continuous gene editing. Plasmids are attractive options
for laboratory and therapeutic applications because of their high stability,
cost-effectiveness, and scalability for large-scale manufacturing (Slattery
etal, 2018; Zhang et al., 2020). However, plasmid delivery also has several
disadvantages. Owing to its complex structure and additional genetic ele-
ments, such as promoters and antibiotic resistance genes, plasmid DNA is
generally larger than mRNA and RNP formats (Lin et al., 2022). Additional-
ly, because the Cas9 protein requires to be transcribed in the nucleus, the
plasmid must cross both the plasma and nuclear membranes for success-
ful delivery, posing significant challenges, especially in eukaryotic cells
(Glass et al., 2018; Vaughan and Dean, 2006). Furthermore, random inte-
gration of the plasmid into the host genome may induce sustained ex-
pression of the Cas9 protein, which can lead to off-target gene editing
and potentially trigger an immune response to foreign DNA (Cho et al,,
2014; Pattanayak et al., 2013).

Another option, the mRNA format, is translated directly in the cyto-
plasm, which eliminates the need for nuclear entry and transcription and
allows for a faster onset of gene editing. Owing to the unstable nature of
RNA, transient expression of the Cas9 protein also reduces off-target ef-
fects and the risk of genome integration (Leonhardt et al., 2014). However,
producing Cas9 and gRNA in an mRNA format is generally more expen-
sive and difficult because of the large size of the expression cassettes. Ad-
ditionally, mRNA exhibits lower stability than DNA in biological fluids and
is highly sensitive to temperature fluctuations, necessitating the use of
low-temperature storage systems (Uddin and Roni, 2021; Zhang et al.,
2020). Finally, the RNP format, which includes the Cas9 protein and gRNA
complex, does not require transcription or translation. This format pro-
vides for the fastest-acting approach, yielding high editing efficiencies,
and minimizing the risk of off-target side effects owing to its short dura-
tion of activity (Kouranova et al., 2016). However, because of the complex
composition and charge properties of RNPs, lipid nanoparticle (LNP) and
adeno-associated virus (AAV) systems, which have been extensively stud-
ied and are commonly used for DNA or RNA delivery, are not readily appli-
cable for RNP delivery (Chen et al., 2019; Wei et al., 2020).

CRISPR-Cas Delivery Systems

Currently, CRISPR-Cas components are delivered via three main deliv-
ery platforms: physical methods, viral vectors, and nonviral vectors. Physi-
cal methods, such as electroporation and microinjection, facilitate the di-
rect delivery of therapeutic molecules into cells by inducing the formation
of temporary nanopores on membranes or by directly introducing the
materials (Tsong, 1991). Electroporation can achieve high delivery effi-
ciency with a variety of CRISPR-Cas formats, including DNA, mRNA, and
RNPs, owing to its mode of action (Kang et al., 2015; Ren et al.,, 2017;
Schumann et al., 2015). This method bypasses the need for a carrier and
imposes few restrictions on the cargo size, typically found with viral vec-
tors (Atkinson and Chalmers, 2010), and unlike nonviral vectors, it is not
constrained by endocytosis as a rate-limiting step (Fajrial et al.,, 2020). In
vivo delivery of plasmid-based CRISPR-Cas9 components via electropora-
tion has been successfully applied in preclinical models. For example,
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CRISPR-Cas9 plasmids targeting Dmd were delivered into the skeletal
muscle of mdx mice, resulting in restored dystrophin expression and im-
proved muscle function (Xu et al., 2016). In another study, co-delivery of
Cas9 RNP and donor DNA into retinal pigment epithelial cells rescued
photoreceptor degeneration in a model of retinitis pigmentosa (Cai et al.,
2019). However, electroporation is generally limited to ex vivo administra-
tion because of the challenges involved, such as the possible impairment
of cell viability by strong electric fields (Bak et al., 2017; Canatella et al,,
2001). The use of 100-volt pulses during electroporation for drug delivery
to the skin causes a painful sensation and can lead to injury (Prausnitz,
1999; Weaver et al.,, 1997). Therefore, the delivery conditions using elec-
troporation must be carefully adjusted based on the cell type and other
experimental parameters to achieve optimal performance.

Viral vectors, including lentivirus vectors (LVs), adenovirus vectors
(AdVs), and adeno-associated virus vectors (AAVs), use the viral machinery
to deliver therapeutic agents (Dong and Kantor, 2021; Tsukamoto et al.,
2018; Verdera et al., 2020). Despite the clinical advantages of viral vec-
tor-based gene therapy, all suffer from specific limitations that limit more
widespread application. Lentiviral vectors have the advantage of stably
integrating transgenes, but they also run the risk of insertional mutagen-
esis (Ranzani et al., 2013) and are difficult to production on a large scale
(Valkama et al., 2020). Adenoviral vectors allow high payloads of genes to
be delivered, but they elicit strong innate and adaptive immune respons-
es (Lowenstein et al,, 2007; Zhu et al., 2007) that limit their repeat use and
safety, due primarily to concerns about vector recombination (Walsh et
al.,, 2009).

Currently, AAVs are the preferred vectors for in vivo gene delivery with
some advantages over other viral vectors, including limited integration
into the host genome and relatively low immunogenicity (VandenDriess-
che et al.,, 2007). Various AAV serotypes exhibit specific tissue tropism, no-
tably for lung epithelial cells, cardiac cells, neurons, and skeletal muscle
cells, enabling targeted gene delivery to specific tissues (Aschauer et al.,
2013; Bish et al., 2008; Blankinship et al., 2004; Halbert et al., 2001).

AAVs are highly prevalent in humans, with approximately 80% of the
population exhibiting seropositivity for at least one AAV serotype. Despite
their extensive distribution, no human disease has been linked to AAV in-
fections (Chhabra et al., 2024; Flotte et al., 2022; Lek et al., 2023b). Owing
to their favorable safety profile, AAVs have become a leading viral delivery
system for in vivo delivery of CRISPR-Cas components (Kim et al., 2017;
Wang et al., 2020b).

Nonetheless, AAVs have critical limitations such as pre-existing neutral-
izing antibodies (Mendell et al.,, 2022) and difficulty with high-titer pro-
duction. Particularly, AAVs have a critical limitation in terms of their DNA
packaging capacity, which is approximately 4.7-5 kb (Dong et al., 1996).
This limitation poses a challenge for the use of larger CRISPR-Cas systems.
The SpCas9 protein alone is encoded by DNA that is more than 4.1 kb in
size, and when combined with sgRNA sequences and regulatory ele-
ments, the total payload frequently exceeds the capacity of a single AAV
vector (Senis et al., 2014). Consequently, CRISPR-based gene editing using
AAV vectors often requires multiple vectors, making the transfection pro-
cess more complex, time-consuming, and costly. Strategies to overcome
this limitation include the use of smaller Cas9 orthologs or Cas12f1 (Kim
et al, 2022; Ran et al., 2015). Another approach involves the use of dual
AAV systems that independently express Cas proteins and gRNAs using
two distinct vectors (Yang et al., 2016). Additionally, split intein reconstitu-
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tion is employed to deliver larger components, such as BEs and PEs, by as-
sembling full-length proteins from split fragments after expression (Levy
etal, 2020; She et al., 2023; Truong et al., 2015).

Nonviral vectors, such as LNPs, offer a safer alternative with lower im-
munogenicity, although their delivery efficiency is often lower than that
of viral methods (Chen et al., 2017; Pérez-Martinez et al., 2011; Uchida et
al,, 2002), and also, unlike electroporation, LNPs are FDA-approved drug
delivery systems that do not impose significant stress on cells (Adams et
al., 2018). LNPs, including liposomes, are widely used as carriers for deliv-
ering various molecules, particularly nucleic acids, into cells (Hou et al.,
2021; Kulkarni et al., 2019). The strong anionic charge of nucleic acids and
their inherent instability outside cells make their passage across the nega-
tively charged cell membrane extremely difficult. Thus, encapsulation in
cationic liposomes enables efficient delivery by facilitating membrane fu-
sion and intracellular release (Gao and Huang, 1996).

The delivery of CRISPR-Cas9 systems using LNPs can occur in the form
of DNA (Zhang et al., 2017), mRNA (Yin et al,, 2016), or RNPs (Zuris et al.,
2015). For gene editing, CRISPR-Cas9 systems have been successfully de-
livered both in vitro and in vivo using the commonly employed Lipofect-
amine transfection (Schuh et al., 2018; Schwank et al., 2013; Yu et al.,
2016). Lipid-based reagents for CRISPR-Cas9 delivery have been utilized in
clinical trials for the treatment of various diseases, such as transthyretin
amyloidosis, hereditary angioedema, and calcific aortic valve stenosis (Ad-
ams et al., 2018; Gillmore et al,, 2021; Longhurst et al.,, 2024; Morrow et al.,
2023).

Although LNPs have several advantages, they are typically sequestered
within endosomes. To prevent lysosomal degradation of the cargo, LNPs
must efficiently escape endosomes after crossing the cell membrane (Gil-
leron et al., 2013). Even though Cas9 complexes successfully escape the
endosome, efficient nuclear transport remains a significant challenge, fre-
quently leading to suboptimal delivery efficiency (Shen et al., 2013). Fur-
thermore, LNP-based delivery is associated with dose-dependent toxicity
and potential immunogenicity, which pose challenges to its therapeutic
applicability (Kedmi et al., 2010; Swaminathan et al., 2016). As for targeted
delivery, LNPs primarily accumulate in the liver, where lipid uptake and
metabolism are mediated by the low-density lipoprotein receptor (LDLR).
Therefore, modulation of the surface charge by recombining the compo-
nents of LNPs is being focused upon to improve delivery to specific organs
that require gene editing (Cheng et al., 2020; Wei et al., 2020).

The currently used delivery systems are limited in their inability to cus-
tomize the delivery formats, duration of expression, and expression levels
of CRISPR-Cas. To overcome these challenges, novel delivery platforms,
such as AuNPs, are being explored. AuNPs are characterized by low toxici-
ty, nonimmunogenicity, biocompatibility, and highly tunable surface
chemistry (Carnovale et al.,, 2016; Shukla et al., 2005). Their favorable
chemical properties facilitate simple conjugation methods, particularly
via interactions with materials containing thiol groups (Cutler et al., 2012;
Liu and Liu, 2017; Storhoff et al., 1998). This allows for the delivery of DNA,
RNA, and proteins via a single platform through the utilization of pre-ex-
isting thiol groups or thiolation of the terminal or externally exposed re-
gions of each molecule. Several studies have demonstrated successful in
vitro and in vivo delivery of RNA (Yeom et al., 2013), single- or dou-
ble-stranded oligonucleotides (Jensen et al., 2013; Kim et al., 2010, 2011;
Ryou et al., 2010), peptides (Lee et al., 2017b; Yeom et al., 2016), proteins
(Ryou et al,, 2014), and antibodies (Yeom et al., 2023) using AuNPs. AuNPs

August 2025 Vol 63 No 8

are particularly advantageous for localized genome editing because they
allow targeted delivery by simultaneously carrying both active substances
and targeting molecules. Furthermore, AuNPs are safe for clinical use and
have been approved by the FDA for clinical research (Kumthekar et al.,
2021). Given their safety and versatility, AuUNPs have also been explored as
delivery vehicles for CRISPR-Cas in the RNP format. Successful gene edit-
ing has been demonstrated in both in vivo and in vitro models using this
platform (Lee et al., 20173, 2018; Shahbazi et al., 2019), which highlights
the potential of AuNPs as future therapeutic platforms, subject to further
research and development.

CRISPR-Based Genetic Therapies in Clinical
Trials

CRISPR-based gene editing has completely changed the scenario in the
field of medical research, enabling the rapid development of cellular and
animal models for preclinical and clinical development of novel treatment
strategies. By directly altering the genome, CRISPR-Cas can offer long-
term benefits to patients in contrast to traditional drug treatments that
provide temporary relief. Furthermore, by easily changing the sgRNA se-
quence and adjusting the Cas9 variants, the system can be quickly imple-
mented to provide a practical and effective therapeutic option for a variety
of diseases. As described previously, the CRISPR-Cas system is a promising
platform for gene editing. To highlight its usefulness, development of
therapeutic approaches using the CRISPR-Cas system and related clinical
trials of this technology are described in this section (Fig. 2 and Table 2).

Blood Disease

B-Hemoglobinopathies, which affect the B-chain of hemoglobin, im-
pair the efficiency of oxygen transport by hemoglobin. These disorders
are among the most prevalent monogenic diseases worldwide, with sick-
le cell disease (SCD) and B-thalassemia being the predominant forms (Piel
et al., 2013). SCD results from a 20A >T mutation in the B-globin gene
(HBB), leading to the production of hemoglobin S (HbS, p“°**) (Kato et
al.,, 2018). The sickle-shaped red blood cells caused by the mutation in-
duce hemolytic anemia and vaso-occlusive events, resulting in ischemic
damage to tissues and contributing to acute pain crises and organ failure
(Piel et al., 2017). In contrast, -thalassemia is resulting from a variety of
mutations, including deletions that reduce the synthesis of functional
B-globin protein. This imbalance between - and a-globin chains leads to
the precipitation of a-globin within red blood cells, causing hemolysis and
impaired erythropoiesis (Taher et al,, 2021).

Many gene editing approaches for -hemoglobinopathies focus on in-
crease fetal hemoglobin (HbF, a2y2) levels by damaging B-cell lympho-
ma/leukemia 11A gene (BCL11A), which suppresses y-globin expression,
and the promoter regions of the y-globin genes (HBG1/2), ex vivo in
HSPCs, to substitute y-globin for B-globin (Forget, 1998; Li et al., 2018). In
2018, clinical trials were initiated to treat severe SCD (NCT03745287;
NCT05329649; NCT05951205) (Vertex Pharmaceuticals, 2018b, 2022a,
2024) and transfusion-dependent B-thalassemia (TDT) (NCT03728322;
NCT03655678; NCT05356195) (Allife Medical Science and Technology,
2019; Vertex Pharmaceuticals, 2018a, 2022b), by targeting the DNase | hy-
persensitivity sites (DHS) in erythroid-specific enhancer of BCLT1A in au-
tologous CD34" cells ex vivo (Canver et al.,, 2015; Wu et al., 2019). Those
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Blood Diseases Eye Disease
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Primary immunodeficiency

Auditory disorder disease

C ital Hearing Loss

NCT03745287
NCT05329649
NCT05951205
NCT03728322
NCT03655678
NCT05356195
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NCT04205435
NCT05577312
NCT06300723
NCT04925206
NCT04390971
NCT05752123
ChiCTR2100052858
ChiCTR2100053406
NCT04853576
NCT05444894
NCT06041620
NCT05456880
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NCT04774536

Neovascular age-related ¢

macular degeneration
NCT06031727
NCT06623279

Cardiovascular Diseases

Calcific Aortic Valve Stenosis
ACTRN12623001095651

Hypercholesterolemia
NCT05398029
NCT06164730
NCT06461702
NCT06451770

Hereditary Angioedema
NCT05120830
NCT06262399
NCT06634420

Transthyretin Amyloidosis
NCT04601051
NCT05697861
. NCT06128629
Muscular Disease NCT08672257
Duchenne Muscular Dystrophy
NCT06392724
NCT05514249
NCT06594094

Metabolic disorders

Primary hyperoxaluria type 1
NCT06511349

Chronic Granulomatous Disease
DS NCT06559176

Solid Tumors Hematologic Malignancies
Esophageal Cancer

NCT03081715 B-cell Malignancies

NCT03166878

Relapsed or Refractory T

Hepat Carci or B-Cell Malignancies

NCT04417764 NCT04502446

Relapsed or Refractory
Multiple Myeloma
NCT04244656
Relapsed or Refractory

B-Cell Non-Hodgkin Lymphoma
NCT04637763
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Multiple Solid Tumors
NCT03545815
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NCT03044743
Relapsed or Refractory
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Relapsed or Refractory

Viral Diseases oo

F M:
Human Papilloma Virus NCT04767308

NCT03057912

i i Autoimmune Disease
Human Immunodeficiency Virus-1

NCT03164135
NCT05144386
NCT05143307

Type 1 Diabetes
NCT05210530
NCT05565248

Hepatitis B virus
NCT06671093

Fig. 2. Clinical trials of CRISPR-based genetic therapies. Schematic illustration of human anatomical structures and associated diseases
investigated in clinical studies using CRISPR-based tools. NCT numbers are classified for different diseases, including cardiovascular diseases,
eye diseases, blood diseases, metabolic disorder, muscular disease, auditory disorder, solid tumors, viral diseases, primary immunodeficiency
disease, autoimmune disease, and hematologic malignancies, according to the affected organs.

led to the U.S. Food and Drug Administration (FDA) approval in 2023 of
Exagamglogene autotemcel (Exa-cel; marketed as CASGEVY), the first
CRISPR-Cas9-based ex vivo gene editing therapy. Preliminary findings
demonstrated a high rate of successful incorporation of genetically modi-
fied HSPCs, with 80% of the alleles exhibiting modification of BCLT1A, 1
year after the treatment. This led to a marked increase in HbF production,
accompanied by a significant reduction in the need for blood transfusions
as well as in the incidence of vaso-occlusive events in patients with SCD
(Frangoul et al., 2021). To disrupt the +58 DHS of BCLT1A, two similar ap-
proaches are currently under clinical evaluation for the treatment of TDT,
developed by Bioray (BRL-101) (NCT04211480, NCT04205435,
NCT05577312, and NCT06300723) (Bioray Laboratories, 2020, 2021, 2022,
2024) and EdiGene (ET-01) (NCT04925206, NCT04390971, and
NCT05752123) (EdiGene, 2021, 2023; Institute of Hematology & Blood
Diseases Hospital, 2023b) (Fang et al., 2019; Zheng et al., 2023). During an
18-month follow-up study of BRL-101, two patients demonstrated suc-
cessful engraftment of modified HSPCs, resulting in an editing incidence
of 85% in the bone marrow and a significant increase in HbF levels (Fu et
al.,, 2022). These outcomes were also observed in 10 patients diagnosed
with TDT (Zheng et al., 2023). Similarly, the initial findings from ET-01 ex-
hibited encouraging results (Shi et al., 2022).

In parallel with this, HSPCs edited using the CRISPR-Cas9 to disrupt BC-
L11A binding site at HBG1/2 (ChiCTR2100052858; ChiCTR2100053406)
(The First Affiliated Hospital of Guangxi Medical University, 2021; The
923rd Hospital of the People's Liberation Army, 2021) showed increased
HbF levels in individuals with TDT (Liu et al., 2023, 2024; Wang et al., 2022).
Additionally, EDIT-301 employs an AsCas12a-based genome editing ap-
proach in HSPCs to effectively disrupt the repressor-binding sites of the
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HBG1/2 promoter via electroporation (De Dreuzy et al., 2019; Hanna et al,,
2023). This results in a 40% increase in HbF, and are currently undergoing
clinical assessment for SCD (NCT04853576) (Editas Medicine, 2021) and
TDT (NCT05444894, NCT06041620) (Editas Medicine, 2022; Institute of
Hematology & Blood Diseases Hospital, 2023a). Beam Therapeutics devel-
oped BEAM-101, which introduces an ABE system to HSPCs by electropo-
ration, to induce a point mutation in the regulatory element of HBG1/2
promoters and reactivating y-globin expression (NCT05456880) (Beam
Therapeutics, 2022; Chockalingam et al., 2024; Gupta et al., 2024).

Alternative approach for treating SCD involves direct correction of HBB
mutations. Clinical trials have attempted to induce HDR by delivering Cas9
RNP into HSPCs via electroporation, with donor DNA introduced through
rAAV6 transduction (Dever et al., 2016; Lattanzi et al., 2021)
(NCT04819841) (Kamau Therapeutics, 2021; Kanter et al., 2021) or electro-
poration (DeWitt et al., 2016) (NCT04774536) (Mark Walters, 2024). Al-
though still in the preclinical stage, BEs hold a promising therapeutic ap-
proach. While those cannot directly reverse the A-to-T mutation, ABEs
have enabled conversion of the HBB® (HbS; BE6V) allele to a naturally oc-
curring nonpathogenic variant HBB° (HbG-Makassar; BEGA), restoring
normal hemoglobin function without off-target effects (Chu et al., 2021;
Newby et al., 2021).

Muscular Disease

Duchenne muscular dystrophy (DMD) is the most common genetic
muscular disorder in humans, especially in male (Mendell et al., 2012),
that causes severe and progressive muscle weakness and wasting due to
insufficient expression of dystrophin from DMD (Guiraud et al., 2015).
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DMD is the largest human gene (79 exons over 2.2 Mb of genomic DNA)
located on the X-chromosome, and the site of numerous mutations, pri-
marily deletions (68%), point mutations (11%), and duplications (11%)
(Aartsma-Rus et al., 2006; Bladen et al., 2015). Dystrophin is essential for
preserving the biomechanical characteristics of fiber strength, flexibility,
and stability in muscle (Blake et al., 2002). Through the dystrophin-associ-
ated protein complex (DAPC), the dystrophin protein functions as a mo-
lecular shock absorber, creating a mechanical connection between the
extracellular matrix and actin cytoskeleton.

Most patients succumb to death in their early adult years due to heart
and respiratory failure, with a median survival of 28.1 years (95% Cl 25.1,
30.3) (Broomfield et al., 2021). Despite intensive clinical efforts focused on
managing coronary heart disease, providing respiratory support, and ad-
ministering corticosteroid, this debilitating illness remains incurable. Re-
cent studies have explored the use of CRISPR-Cas, BEs, and CRISPRa tech-
nologies to restore dystrophin expression in affected patients. CRISPR-Cas
is able to induce indels at the splice donor or acceptor site, and skipping
exon 51 resulted in the production of a shorter but functional dystrophin
protein that could improve muscle function (Amoasii et al., 2017). Under
this strategy, a clinical trial (NCT06594094) (HuidaGene Therapeutics,
2024) is in progress using CRISPR-hfCas12Max (Zhang et al., 2022a), deliv-
ered via a single all-in-one AAV vector, intravenously. This therapeutic
candidate, HG302, demonstrated restoration of dystrophin protein ex-
pression in muscle fibers and improvement of muscle function to near
wild-type levels in preclinical studies involving humanized DMD mouse
models (HuidaGene Therapeutics, 2023b). Similarly, another clinical trial
(NCT06392724) (GenAssist, 2024) for GEN6050X (GenAssist) aims to skip
exon 50 using its proprietary Targeted AID-mediated Mutagenesis (TAM)
CBE, delivered intravenously via dual AAV9 vectors (Yuan et al., 2018).

The regulation of gene expression through CRISPRa facilitates the mod-
ulation of disease-modifying genes, potentially delaying disease progres-
sion or alleviating symptoms, thereby providing therapeutic opportuni-
ties for all patients with DMD regardless of their dystrophin mutations
(Mollanoori et al., 2021). Recently, Cure Rare Disease, Inc. in the United
States initiated the first CRISPR-based clinical trial on DMD (NCT05514249)
(Cure Rare Disease, 2022). This n-of-1 clinical trial was conducted on a
27-year-old patient with DMD having muscular dystrophin deficiency due
to an exon 1 deletion. The therapeutic agent named CRD-TMH-001 was
designed to upregulate the expression of an alternative dystrophin iso-
form to bypass the effect of mutation by intravenously delivering a high
dose of AAV9-dSaCas9-VP64 (1 x 10™ vg/kg), where VP64 is tetrameric
repeat of the herpes simplex virus type 1 transcription activator VP16 (Pe-
rez-Pinera et al,, 2013). Regrettably, the patient experienced cardiac arrest
and died two days later, and autopsy findings indicate lung damage as
the underlying cause. The study team concluded that these side effects
were not due to the CRISPR-Cas technology itself, but rather due to the
high-dose usage of AAV (Lek et al.,, 2023a). It highlights the toxicity con-
cerns associated with AAV-based gene therapies and has important impli-
cations for the future development of gene therapeutics.

Eye Disease

Leber congenital amaurosis (LCA): Leber congenital amaurosis (LCA) is
an inherited degenerative retinal disease that results in severe visual im-
pairment and blindness at an early age, with an incidence of approxi-
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mately 1 in 80,000 (Tsang and Sharma, 2018). This disease has more than
20 types and is distinguished by genetic causes and symptoms. The most
common type, LCA10, results from loss-of-function mutations in CEP290,
which is essential for the assembly and phototransduction of the photo-
receptor cilia(den Hollander et al., 2006; Stone, 2007). The IVS26 mutation
(c2991 + 1655A > G) in intron 26 of CEP290 creates an aberrant splice
site, resulting in a premature stop codon, and accounts for more than 15%
of all LCA cases (den Hollander et al., 2006).

Recent advances in CRISPR-Cas9 gene editing, the removal or correc-
tion of the IVS26 mutation via NHEJ and HDR pathways in iPSC and LCA10
mouse models have demonstrated potential therapeutic effects (Burnight
etal, 2017; Maeder et al., 2019; Ruan et al., 2017). EDIT-101, developed by
Editas Medicine, is designed to remove IVS26 mutation through subreti-
nal injection of an AAV5 vector delivering SaCas9 and two sgRNAs that
target sequences flanking the mutation site, thereby restoring normal
CEP290 expression (Ledford, 2020). Phase I/1l clinical trial (NCT03872479)
(Editas Medicine, 2019) established it as the first in vivo CRISPR-Cas9
gene-editing therapy to receive regulatory approval for clinical trial initia-
tion, and the trial reported no severe adverse effects related to the treat-
ment or procedure, and no dose-limiting toxicities were observed (Pierce
etal, 2024).

Neovascular age-related macular degeneration (nAMD): Age-related
macular degeneration (AMD) is the most common cause of blindness in
the elderly. It is characterized by irreversible vision loss caused by a pro-
gressive deterioration of the macula, the central region of the retina (Ferris
et al., 1984). Neovascular AMD (nAMD), which accounts for 80-90% of
AMD blindness, is primarily caused by abnormalities in vascular endothe-
lial growth factor (VEGF) signaling (Bressler et al., 1988). Overexpression of
VEGF-A, one of several isoforms of VEGF, leads to abnormal growth of
choroidal neovascularization (CNV), which is the key pathological charac-
teristic of NnAMD (Amadio et al., 2016). The result of neovascularization is
very delicate and susceptible to bleeding and fluid leakage, leading to de-
terioration of central vision.

HuidaGene Therapeutics developed HG202 (NCT06031727,
NCT06623279) (HuidaGene Therapeutics, 2023a, 2025), an RNA targeting
gene therapy that utilizes high-fidelity CRISPR—Cas13Y delivered via uni-
lateral subretinal injection using an rAAV vector to knock down VEGF-A
expression (Tong et al., 2023). This strategy was demonstrated by a single
subretinal treatment that suppressed VegfA mRNA expression by more
than 40% and reduced the area of laser-induced CNV in the eyes by 87%
in mice (Shi et al.,, 2023, 2024).

Auditory Disorder

Congenital hearing loss refers to hearing impairment present before a
child acquires speech abilities and affects approximately 1 in 500 new-
borns (Mehl and Thomson, 1998). One of the primary causes of auditory
neuropathy spectrum disorder and the cause of 1-8% of congenital
non-syndromic hearing loss is the ¢.2485 C > T (p.Q829X) nonsense mu-
tation in the OTOF, which encodes the calcium-binding protein otoferlin
(lwasa et al., 2013; Migliosi et al., 2002; Yang et al., 2013b). HG205 was
evaluated in clinical trials (NCT06025032) (HuidaGene Therapeutics,
2023c) as a treatment that restores functional protein expression by tar-
geting mutant mRNA rather than altering genomic DNA. The approach
involves delivering a CRISPR-Cas13 system via intracochlear injection of
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an AAV vector, enabling RNA base editing to repair the mutation at the
transcript level (Xue et al., 2023), however, the trial was withdrawn due to
the absence of enrolled patients in China.

Autoimmune Disease: Type 1 Diabetes Mellitus
(T1D)

T1D is an autoimmune disease characterized by the immune-mediated
destruction of pancreatic -cells, which are responsible for insulin produc-
tion (Harrison et al., 2004). Insulin deficiency leads to chronic hyperglyce-
mia, which can cause long-term complications affecting various organs,
including the eyes, cardiovascular system, kidneys, nerves, and oral health
(Shojaeian and Mehri-Ghahfarrokhi, 2018). Although T1D can occur at any
age, it is more frequently identified during childhood or adolescence and
resulted in life-threatening in the absence of appropriate treatment. The
conventional treatment for T1Ds includes frequent blood glucose moni-
toring and subcutaneous insulin injections, requiring strict adherence to
administration protocols to maintain blood glucose levels (Aathira and
Jain, 2014). Because of the inconvenience of daily insulin injections, the
transplantation of autologous stem cell-derived B-cells offers unlimited
cell supply and avoids graft rejection for patients with T1D (Millman et al.,
2016). However, without immunosuppression, persistent autoimmune re-
sponses rapidly destroy the transplanted cells and immunotherapy to en-
hance B-cell tolerance has not yet been successfully developed (Atkinson
etal, 2019), limiting this approach to the most severe cases and hindering
broader application (Bruni et al., 2014; Gruessner and Sutherland, 2005).

In the absence of a definitive cure, CRISPR-Cas-based therapeutic strat-
egies suggest various approaches to improve B-cell survival by modulat-
ing immune responses, and increase insulin production. A representative
method involves the CRISPR-Cas9-mediated knockout of 32-microglobu-
lin (B2M), an essential component of the MHC-I signaling pathway, fol-
lowed by insertion of the PD-L1 at B2M locus by HDR pathway to facilitate
circumvention of transplant rejection (Sluch et al,, 2019). Based on this
concept, in 2022, CRISPR Therapeutics and ViaCyte introduced VCTX210A.
VCTX210A is composed of genetically modified allogeneic pancreatic en-
doderm cells (PEC210A) encapsulated within an implantable device. Fol-
lowing implantation, the cells differentiate into 3-cells and other islet cells
in the perforated device and started to supply insulin into the blood. The
efficacy and safety of VCTX210A are being evaluated in clinical trial
NCT05210530 (CRISPR Therapeutics, 2022; Philippidis, 2022). Additionally,
a new study, NCT05565248 (CRISPR Therapeutics, 2023a), is underway to
assess the safety, efficacy, and tolerance of VCTX211, an allogeneic
gene-edited stem cell (PEC211)-derived product (Karpov et al., 2023).
VCTX211 exhibits similar modality with that of VCTX210A, but the PEC211
consists of B2M, TXNIP deletion and PD-L1, HLA-E, TNFAIP3, MANF inser-
tion to improve functionality and enhanced cell fitness in patients with
T1D.

Metabolic Disorder

Calcific aortic valve stenosis: Calcific aortic stenosis (AS) is a progressive
fibrocalcific condition characterized by the gradual thickening and accu-
mulation of calcium in the aortic valve leaflets. Over time, this process
leads to severe narrowing of the valve, resulting in left ventricular hyper-
trophy and obstruction of cardiac outflow, which significantly limits blood
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supply to the body (Rajamannan et al., 2011). The pathogenesis of calcific
AS is complex, beginning with fibrocalcific processes in the aortic valve,
including the overproduction and disorganization of collagen fibers.
These alterations are exacerbated by endothelial cell damage driven by
lipid-derived species, cytokines, and other stressors, such as mechanical
strain and radiation injury. Subsequently, LDL and lipoprotein(a) (LP(a))
infiltrate the valve, promoting the recruitment of inflammatory cells and
accelerating inflammation and mineralization of the valve leaflets (Lind-
man et al., 2016).

Currently, no effective pharmacotherapy is available for this condition,
and patients with severe cases require surgical aortic valve replacement.
Due to the complex etiology of the disease, therapeutic efforts have fo-
cused on addressing contributory factors rather than the root cause. CTX-
320, developed by CRISPR Therapeutics, targets LPA to reduce LP(a) ex-
pression by delivering Cas9 mRNA and sgRNA to the liver via LNP-mediat-
ed intravenous injection (Morrow et al., 2023). Preclinical data from cyno-
molgus monkeys demonstrated dose-dependent gene editing results,
with a single 2 mg/kg infusion resulting in a 94% reduction in mean plas-
ma LP(a) levels, which persisted until day 224. CTX-320 is currently under-
going a Phase | clinical trial (ACTRN12623001095651p) (CRISPR Therapeu-
tics, 2023b).

Hypercholesterolemia: Patients with familial hypercholesterolemia (FH)
are unable to recycle low-density lipoprotein cholesterol (LDL-C). Normal-
ly, LDL-C levels increase with age; however, patients are born with high
LDL-C levels, resulting in plaque buildup and a high risk of coronary heart
disease. FH is mostly caused due to the mutation of the LDLR (~80%) for
LDL-C receptor (LDLR) that transports LDL-C from the blood into cells to
use or remove from the body (Defesche et al., 2017). Additionally, muta-
tions in APOB and PCSK9, which encode apolipoprotein B and proprotein
convertase subtilisin/kexin type 9 (PCSK9), respectively, are responsible
for FH (Alves et al., 2014; Cunningham et al., 2007). As the main compo-
nent of LDL, apolipoprotein B plays an essential role in the interaction be-
tween LDL and LDLR (Behbodikhah et al., 2021). In the case of PCSK9,
which regulates LDL receptor degradation via lysosomes, gain-of-function
mutations decrease LDL transport to the liver, contributing to FH develop-
ment (Abifadel et al., 2009).

VERVE-101 and VERVE-102, the therapeutic candidates for heterozy-
gous FH (HeFH) developed by Verve Therapeutics, are designed to disrupt
PCSK9in the liver by targeting the splice donor site to introduce a prema-
ture stop codon and inactivate PCSK9 (Lee et al., 2023; Vafai et al., 2024).
They utilize ABE mRNA and sgRNA to target PCSK9, which are encapsulat-
ed in standard LNP for VERVE-101 and proprietary GalNAc LNP in
VERVE-102 (NCT05398029, NCT06164730) (Verve Therapeutics, 2022,
2024a). GalNAc LNP utilizes the GalNAc ligand, which binds to the asialo-
glycoprotein receptor (ASGPR) that is primarily expressed in the liver
(Kasiewicz et al., 2023), whereas the standard LNP system mediates LDLR
for endocytosis. This renders GalNAc LNP a more applicable liver-directed
delivery system for patients with FH who have reduced LDLR levels.
VERVE-101 or 102 was administrated by one-time intravenous infusion,
and participants who received VERVE-101 showed a ~48% reduction in
LDL-C and ~84% decrease in PCSK9 levels. However, the clinical trial of
VERVE-101 was stopped because of side effects; the participant showed
signs of organ damage and blood clotting. Participant recruitment is un-
derway for VERVE-102; nonetheless, non-human primate (NHP) data have
demonstrated a 62% decrease in LDL-C levels sustained for 6 months with
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a single infusion.

YOLT-101, developed by YolTech Therapeutics (NCT06461702) (YolTech
Therapeutics, 2024b), attempts long-term inhibition of PCSK9 in patients
with HeFH using the hpABES system in combination with optimized Gal-
NAc LNP. Following administration to NHPs, YOLT-101 demonstrated sus-
tained LDL-C reduction for up to 2 years. In a clinical study, patients who
received 0.6 mg/kg dose of YOLT-101 exhibited 72.5% reduction in PCSK9
levels and 50.4% reduction in LDL-C levels at 16 weeks post-treatment as
reported in a recent preprint (Wan et al.,, 2025).

Patients with refractory hypercholesterolemia (RH), including those
with homozygous FH (HoFH) and compound-HeFH carrying two mutant
LDLR alleles, result in at least two-fold higher plasma LDL-C levels than
patients with HeFH. These individuals respond poorly to existing treat-
ments, even at the maximal tolerable doses, and develop heart disease in
the first two decades of life (Li and Wu, 2022). For instance, patients with
HoFH are unresponsive to PCSK9-targeting drugs because they have a
nonfunctional LDLR. To address this issue, VERVE-201 is currently in Phase
Ib trial (NCT06451770) (Verve Therapeutics, 2024b). VERVE-201, compris-
ing an mRNA encoding ABE and an sgRNA targeting the angiopoietin-like
3 (ANGPTL3) gene, was intravenously administered to reach the liver us-
ing GalNAc LNP (Lee et al., 2024). This drug was designed to inhibit
ANGPTL3 expression in the liver to decrease the synthesis of LDL-C and
triglycerides. Preclinical data for NHP infused with 3 mg/kg VERVE-201
presented a 95% mean reduction in blood ANGPTL3 levels, and in the
HoFH NHP model, LDL-C levels decreased 46% from 458 to 247 mg/dL.

Primary hyperoxaluria type 1 (PH1): The inherited metabolic disorder
primary hyperoxaluria type 1 (PH1) is due to mutations in the AGXT gene
that encodes the hepatic enzyme alanine-glyoxylate aminotransferase
(AGXT) (Latta and Brodehl, 1990), and loss or dysfunction of this protein
leads to excessive oxalate production. Because oxalate cannot be further
metabolized, it accumulates and is excreted in the urine, which results in
progressive renal deposition and systemic oxalosis (Cochat and Rumsby,
2013).

YOLT-203 utilizes LNP delivery of a CRISPR-Cas12 system to permanent-
ly reduce oxalate levels by disrupting glycolate oxidase (GO), an enzyme
encoded by the HAOT gene and critical for hepatic oxalate biosynthesis.
Targeting HAOT rather than AGXT may offer therapeutic advantages, as
PH1 can result from a heterogeneous spectrum of AGXT mutations (Wil-
liams et al,, 2009). In a Phase | clinical study (NCT06511349) (YolTech Ther-
apeutics, 2024a), the agent demonstrated the potential to normalize uri-
nary oxalate excretion in patients with PH1; individuals who received the
higher dose of 0.45 mg/kg exhibited a ~70% reduction in 24 h urinary ox-
alate levels, which was sustained throughout the 16-week primary obser-
vation period.

Protein-folding Disease: Transthyretin
Amyloidosis (ATTR)

Amyloidosis is caused by the accumulation of misfolded proteins in or-
gans. Accumulation of misfolded transthyretin (TTR) protein in the body,
usually in the heart, leads to transthyretin amyloid-cardiomyopathy (AT-
TR-CM), which makes the heart to thicken and become stiff (Ruberg et al.,
2019). ATTR is classified into two types: wild-type ATTR (WtATTR), which is
not associated with genetic mutations in the TTR, and hereditary ATTR
(hAATR), which is associated with mutations in the TTR. Misfolding of TTR
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is related to the pH or temperature around the protein, and misfolding of
wild-type TTR is related to aging, wherein the protein tetramer is dam-
aged and dissociated into a monomer that becomes denatured and mis-
folded. In hATTR, the mutant TTR associated with ATTR-related symptoms
is inherited from the parents and can manifest at any age (Kelly et al.,
1997). In both cases, the median survival time after the disease onset
without treatment is 2.5-3.5 years.

Research on the gene editing strategy has focused on knocking out the
TTR in the liver because more than 99% of circulating TTR is produced in
the liver. Based on this mechanism, clinical trials for ATTR-CM and AT-
TR-PN (polyneuropathy) using a drug named NTLA-2001, developed by
Intellia Therapeutics, have progressed to Phase Ill (NCT04601051,
NCT05697861, NCT06128629, and NC06672237) (Gillmore et al., 2021; In-
tellia Therapeutics, 2020, 2023a, 2023b, 2024b). NTLA-2001 incorporates
human codon-optimized SpCas9 mRNA and sgRNA, both encapsulated
within a liver-targeting LNP delivery system, and is administered via intra-
venous infusion. Proprietary LNP employs a ionizable lipid optimized for
hepatic delivery, and enhance endosomal escape. A single administration
of NTLA-2001 resulted in sustained reduction in serum TTR protein levels,
observed as early as 14 days post-treatment, with patients receiving a 0.1
mg/kg dose demonstrating a reduction exceeding 47%, whereas those
receiving 0.3 mg/kg achieved a reduction of more than 80%.

Inflammatory Disease: Hereditary Angioedema
(HAE)

HAE is a rare autosomal dominant disorder caused by mutations in the
SERPING1, which encodes a C1 esterase inhibitor (C1-INH) that regulates
contact activation pathways. Type | HAE arises from a deficiency in C1-
INH, whereas Type Il HAE results from dysfunctional C1-INH. Both forms
lead to increased levels of bradykinin, a peptide that promotes vascular
permeability and tissue swelling (Kaplan and Joseph, 2010).

The pathogenesis of HAE involves a cascade in which the KLKBT pro-
duces prekallikrein, which is indirectly activated by C1-INH into kallikrein.
Subsequently, kallikrein acts on kininogen, leading to the generation of
bradykinin, and which process is inhibited by C1-INH. Elevated bradykinin
levels activate the bradykinin receptors 1 and 2, among which bradykinin
receptor 2 is closely associated with the hallmark symptoms of HAE. These
symptoms include episodes of severe and unpredictable swelling that can
occur every few days or weeks. Swelling can last for several hours to days
and can be life-threatening, particularly when it affects the throat.

NTLA-2002, developed by Intellia Therapeutics, targets KLKBT and
blocks plasma kallikrein production, thereby preventing bradykinin for-
mation (NCT05120830, NCT06262399, and NCT06634420) (Intellia Thera-
peutics, 2021, 2024a, 2025). This therapy comprises SpCas9 mRNA and
sgRNA with liver-targeting LNP, which are administered as a single intra-
venous infusion to patients with HAE. Plasma kallikrein levels were report-
ed to be maximally reduced by 8 weeks, with a 67% reduction in patients
receiving 25 mg and a 95% reduction in those receiving 75 mg dose. Re-
duced kallikrein levels were sustained for at least 32 weeks in the 75 mg
cohort and for more than 48 weeks in the 25 mg cohort. In terms of HAE
attacks, patients in the study had baseline attack rates of 1.1 to 7.2 attacks
per month. However, the 25 mg group demonstrated a 91% mean reduc-
tion in the attack frequency, and none of the patients in this group experi-
enced any HAE attack 10 weeks after treatment (Longhurst et al., 2024).
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Cancers

The CRISPR-Cas9 system is applied not only to genetic disorders but
also to acquired diseases, such as cancer, wherein the system is used to
enhance lymphocytes and leukocytes to target and attack cancer cells.
Recently, immunotherapy using chimeric antigen receptor-T (CAR-T), the
genetically modified T cells expressing chimeric antigen receptors that
recognize specific cancer cell antigens, has attracted attention because of
its flexibility in targeting various cancer types.

In CAR-T and CAR-NK immunotherapies, CRISPR-Cas is employed to en-
hance the functionality and specificity of immune cells in targeting cancer
cells. The most commonly used strategy is to knockout the PD-7inT cells,
which binds to PD-L1 on the surface of cancer cells and suppresses T-cell
activity (Zhao et al., 2018). Once eliminated, the modified T cells are acti-
vated to mount a strong immune response against cancer cells and re-
duce immune evasion of the cells (Ko, 2015; Wang et al., 2016). In this
context, clinical trials of autologous tumor-infiltrating lymphocytes (TILs),
knocked out for the PD-1 using CRISPR-Cas9, are currently underway in
patients with esophageal cancer (NCT03081715) (Hangzhou Cancer Hos-
pital, 2017) and advanced hepatocellular carcinoma (HCC) (NCT04417764)
(Central South University, 2019), as well as for PD-1 KO autologous
EBV-specific cytotoxic T lymphocytes (CTLs) in patients with malignancies
(NCT03044743) (Yang, 2017).

By knocking out the T-cell receptor (TCR) and PD-1 in CAR-T cells using
the CRISPR-Cas system, cells can minimize the host immune response and
respond more efficiently to their redirected targets. When applied to me-
sothelin-targeting CAR-T cells, which are in clinical trials in patients with
mesothelin-positive multiple solid tumors (NCT03545815) (Chinese PLA
General Hospital, 2018), this strategy can target mesothelin-overexpress-
ing cancer cells while simultaneously addressing potential side effects,
such as graft-versus-host disease (GVHD). Moreover, a clinical trial in pa-
tients with B-cell malignancies (NCT03166878) (Chinese PLA General Hos-
pital, 2017) used a strategy that knocked out TCR and beta-2 microglobu-
lin (B2m) to reduce MHC-I expression and improve immune recognition
of CAR-T cells.

The NCT04502446 (CRISPR Therapeutics, 2020b) clinical trial employed
a strategy to improve therapeutic efficacy while reducing the host im-
mune response by simultaneously knocking out TCR and MHC- in alloge-
neic CAR-T cells targeting CD70 overexpressed in specific cancer cells (Ja-
cobs et al., 2015). In parallel, CAR gene insertion has been used to improve
the functionality of CAR-T cells in an allogeneic environment. A similar
strategy was used in NCT04244656 (CRISPR Therapeutics, 2020a), which
aimed to improve the therapeutic efficacy and reduce the host immune
responses by simultaneously knocking out TCR and MHC-l in CAR-T cells,
targeting B-cell maturation antigen (BCMA), a protein highly expressed in
multiple myeloma cells (Shah et al., 2020).

CD19 is a protein specifically expressed in B-cell carcinomas, and ap-
proaches that utilize CD19-targeting CAR-T cells while simultaneously si-
lencing PD-1 and TCR to increase persistence and anticancer activity are
being explored. This strategy is also being investigated in a clinical trial
(NCT04637763) (Caribou Biosciences, 2021) in patients with B-cell
non-Hodgkin lymphoma. As a strategy to increase the effectiveness of the
CAR-T cell therapy, a clinical trial (NCT04037566) (Xijing Hospital, 2019) is
currently underway to improve the effectiveness of CAR-T cells targeting
CD19 by inhibiting hematopoietic precursor kinase 1 (HPK1), a negative
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regulator that knocks down the TCR signaling pathway (Zhang et al.,
2022b). An ongoing clinical trial (NCT04767308) (Huazhong University of
Science and Technology, 2021) is aiming to further activate the T cell sig-
naling pathway by turning off CD5, a negative regulator, along with TCR,
allowing CAR-T cells to more effectively recognize and attack cancer cells.
Furthermore, because CD5 has the potential to trigger fratricide between
CAR-T cells, its removal may prevent self-destruction of CD5-targeted
CAR-T cells.

Strategies to treat human papillomavirus (HPV)-related cervical cancer
target the HPV E6 and E7 genes and virus-derived oncogenes that are ex-
pressed only in cancer cells. The E6 protein ubiquitinates and degrades
the tumor suppressor protein p53 (Scheffner et al.,, 1990, 1993), an im-
portant protein that plays a role in cell cycle regulation, DNA damage re-
pair, and apoptosis induction. When E6 inhibits p53, cells survive and pro-
liferate in an abnormal state, making them more likely to become cancer-
ous. The E7 protein binds to and inactivates another cancer suppressor
protein, the retinoblastoma protein pRb (Giarre et al.,, 2001). pRb plays an
important role in cell cycle regulation by inhibiting the entry of cells from
G1 to S phase. When pRb is inhibited by E7, the cell cycle progresses un-
controllably, resulting in abnormal cell proliferation. A clinical trial,
NCT03057912 (First Affiliated Hospital, 2018), is underway to knock out E6
and E7 using a CRISPR-Cas9 plasmid surrounded by Poloxmer 407-based
gel as a therapeutic strategy, administered twice per week for 4 weeks.
Because E6 and E7 are only expressed in HPV-infected cells, treatment is
likely to selectively induce apoptosis and growth inhibition in HPV-infect-
ed cervical cancer cells with no effect on normal cells (Honegger et al,,
2015, Pal and Kundu, 2020).

Viral Diseases

Human immunodeficiency virus (HIV) infection: The HIV, a member of
the retrovirus family, specifically targets CD4" T cells (Février et al., 2011).
In the early stages of infection, there is a latency period that typically lasts
approximately 10 years, when no new virions are produced; however, the
viral genome integrates into the host cell DNA and remains intact. During
the active phase of HIV infection, the virus rapidly replicates, and as the vi-
rus increasingly weakens the immune system and reduces the CD4* T cell
count to critical levels (below ~200 cells/pl), the person reaches the stage
of AIDS (Krentz et al., 2004). Owing to the lifecycle of HIV, drugs that sup-
press HIV replication is ineffective against latent HIV infection (Siliciano et
al.,, 2003). However, these latent cells may subsequently be reactivated,
resulting in the production of new virions (Ruelas and Greene, 2013).
Thus, latent HIV infection presents a major challenge to treatment.

Recently, clinical studies have been actively conducted on the use of
CRISPR-Cas9 technology for HIV-1 treatment. For example, a clinical trial
(NCT03164135) (Affiliated Hospital to Academy of Military Medical Scienc-
es, 2017) demonstrated resistance to HIV in patients with hematological
malignancies via CCR5 knockout. In addition to HIV-binding to the CD4
receptor, the coreceptor CCRS5 further facilitates cellular invasion (Bleul et
al., 1997). In the trial, a patient with acute lymphoblastic leukemia showed
remission 19 months after allogeneic stem cell transplantation from do-
nor cells with a CCR5 knockout without any gene editing-associated ad-
verse effects. However, the proportion of modified lymphocytes was low
(5%), prompting the exploration of advanced strategies to improve the
efficiency of gene modification (Xu et al., 2019). Additionally, EBT-101, a
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CRISPR-Cas9-based gene therapy in Phase 1 clinical trials (NCT05144386)
(Excision BioTherapeutics, 2022), is employing an AAV vector to deliver
CRISPR-Cas9 and two sgRNAs to target flanking long terminal repeat 1
(LTR1) and GagD within the HIV-1 provirus by a single intravenous admin-
istration (Dash et al.,, 2019). Preliminary results from these trials on three
participating patients have been published and revealed no dose-limiting
toxicities or severe adverse events. A long-term follow-up study (EBT-101-
002; NCT05143307) (Excision BioTherapeutics, 2023) is currently enrolling
participants.

Hepatitis B virus (HBV): Chronic hepatitis B is a persistent inflammatory
condition of the liver caused by infection with the hepatitis B virus (HBV)
(Hoofnagle, 1990). The most widely used treatment related to nucleos(t)
ide analogs (NA), which inhibit viral replication, along with immunomod-
ulators that enhance the host immune responses (Zoulim and Locarnini,
2009). However, the covalently closed circular DNA (cccDNA) of HBV can
persist within hepatocytes, presenting a major barrier to complete viral
clearance and increasing the risk of viral reactivation upon discontinuing
treatment (Richman, 2000). In addition, these therapies typically result in
viral suppression rather than a functional cure, which is defined as the loss
of the hepatitis B surface antigen (HBsAg) (Lai et al., 2007; Liaw et al,,
2009). To address these limitations, TUNE-401 (NCT06671093) (Tune Ther-
apeutics, 2024b) is being evaluated in an ongoing clinical trial. It utilizes
mRNA encoding a sgRNA and dCas9 fused to a methyltransferase and an
additional epigenetic repressor, delivered via LNPs through a single intra-
venous drip administration. The intervention targets conserved master
controller sequence in HBVs to induce methylation of viral DNA and tran-
scriptional repression that potentially facilitate sustained antiviral effects
(Tune Therapeutics, 2024a).

Primary Inmunodeficiency Disease

Chronic granulomatous disease (CGD) is a rare inherited immunodefi-
ciency disease that causes recurrent and life-threatening infections with
bacteria, mycobacteria, and fungi (Heyworth et al., 2003). CGD results
from mutations in genes encoding subunits of the phagocyte NADPH oxi-
dase complex, which is responsible for generating ROS during the respira-
tory burst of phagocytosis. Affected neutrophils fail to produce sufficient
ROS, leading to impaired microbial killing (Seger, 2010).

PM359 (NCT06559176) (Prime Medicine, 2024), developed by Prime
Medicine, is an autologous HSPC therapy that represents the first clinical
trial application of prime editing technology. It aimed to correct the delGT
mutation in the NCF1, which causes the most common pathogenic vari-
ant of p47°"*deficient form of CGD. A single dose was well tolerated and
restored NADPH oxidase activity to levels significantly exceeding the min-
imum threshold required for clinical benefit (Prime Medicine, 2025).

Concluding Remarks and Future Perspectives

The CRISPR-Cas technology is an innovative approach for gene editing
and is promising for the treatment of various genetic diseases. Unlike tra-
ditional treatments that only alleviate symptoms, this technology can tar-
get the root cause of both rare and common genetic disorders by directly
and permanently modifying the causative genetic variants.

The therapeutic potential of this technology has led to extensive re-
search collaboration. Universities and research institutions can leverage
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their advantages in basic research to provide enterprises with innovative
technical approaches and theoretical support. In addition, large pharma-
ceutical companies are partnering with biotech firms specializing in the
CRISPR-Cas technology to achieve complementary advantages. For exam-
ple, the Broad Institute at MIT and Harvard University have collaborated
with multiple biopharmaceutical companies to conduct research on CRIS-
PR-Cas-based disease treatment, accelerating the translation of research
into clinical applications. Similarly, Bayer and Editas Medicine reached a
cooperative agreement to develop treatments for ophthalmic diseases
based on the CRISPR-Cas technology.

Despite its transformative potential, several challenges remain in the
therapeutic application of CRISPR-Cas technologies. Long-term safety
risks include off-target effects, unintended mutations, and genotoxicity.
Even with high-fidelity Cas variants and improved guide RNA design, rare
but harmful off-target events cannot be ruled out. Moreover, the long-
term consequences of genome editing, particularly in stem cells or tissues
with proliferative capacity, remain poorly understood. Therefore, continu-
ous preclinical and clinical monitoring, along with the development of re-
versible or self-limiting editing systems, is imperative. Another major chal-
lenge is immunogenicity. Pre-existing adaptive immune responses
against Cas9, derived from bacteria, have been identified in humans. In
particular, the major orthologs of the Cas9 protein, SpCas9 and SaCas9,
have shown a high probability of stimulating human immune responses.
Antibodies against SaCas9 and SpCas9 were detected in 78% and 58% of
the donors, respectively, and antigen-specific T cells were identified in
78% and 67% of the donors, respectively (Charlesworth et al., 2019).
These findings indicate that the potential immunological implications of
the CRISPR-Cas9 system should be thoroughly evaluated for clinical appli-
cation. Moreover, Ethical considerations mainly involve germline editing
because somatic cell editing does not affect future generations. Although
current clinical applications only focus on somatic cells, public concern is
high following reports of embryo editing and highlighting the need for
responsible use through transparency, public engagement, and strict
oversight.

Owing to safety concerns, the FDA has conducted limited clinical trials
on gene-editing technologies. Similarly, the World Health Organization
has issued international guidelines emphasizing that gene-editing re-
search must prioritize human safety and ethical considerations (World
Health Organization, 2021). In 2023, Vertex Pharmaceuticals made signifi-
cant progress in raising awareness with the approval of CASGEVY, a thera-
peutic agent that utilizes the CRISPR-Cas technology, through an ex vivo
approach. This marks a significant milestone, suggesting its potential to
meet safety and efficacy standards. To expand the use of the CRISPR-Cas
technology in vivo, further research is required to address safety issues,
optimize delivery methods, and improve the spatial configuration of the
CRISPR-Cas systems. Efforts are being made to develop and improve vari-
ous delivery systems, including LNPs and AAVs, with the need for new ap-
proaches to improve the stability and efficiency of gene-editing systems.

Despite the scope for improvement, the CRISPR-Cas technology is an-
ticipated to become an essential tool for the treatment and management
of various diseases for several reasons. First, with deeper research on gene
functions and interactions, more precise gene editing can be achieved. It
not only accurately corrects single-base mutations, but also adjusts com-
plex gene structures, such as large fragment gene insertions, deletions, or
replacements, while further reducing off-target effects to enhance treat-
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ment safety and effectiveness, thus enabling the effective treatment of
more complex genetic diseases. Second, the development of more effi-
cient and safe delivery systems can lead to more precise delivery of the
CRISPR-Cas system to target cells, improve delivery efficiency, and mini-
mize its impact on normal cells. For example, an LNP-based delivery sys-
tem may be optimized in terms of structure and composition to better
penetrate the cell membrane and deliver the CRISPR-Cas system into the
cell nucleus. Third, personalized medicine will be readily available. Based
on each individual’s unique genetic information, the CRISPR-Cas technol-
ogy can be used to tailor personalized treatment plans. By precisely ana-
lyzing patient genes to determine specific mutation sites of pathogenic
genes and designing targeted CRISPR-Cas gene-editing strategies, true
precision medicine can be achieved, greatly improving treatment effects
and reducing unnecessary side-effects. Finally, the application of the
CRISPR-Cas technology will be expanded to include other fields. In addi-
tion to the currently focused areas, such as genetic diseases and cancer,
the technology may provide breakthroughs in the treatment of infectious
diseases, cardiovascular diseases, and metabolic diseases. As discussed in
this review, as long as the CRISPR-Cas technologies continue to develop,
they are expected to achieve remarkable breakthroughs in clinical appli-
cation in the future, playing a pivotal role in biomedical sciences.
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